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Abstract

Gauss mixture (GM) models are frequently used for their ability to well
approximate many densities and for their tractability to analysis. We propose
new classification methods built on GM clustering algorithms more often stud-
ied and used for vector quantization (VQ). One of our methods is an extension
of the ‘codebook matching’ idea to the specific case of classifying whole im-
ages. We apply these methods to a realistic supervised classification problem
and empirically evaluate their performances compared with other classification
methods.

1 Introduction

Gauss mixture (GM) models have long been used to estimate arbitrary probability
densities, especially densities that can be considered as mixtures of several modes.
Historically, GM modeling played a fundamental role in the development of speech
compression systems (e.g. LPC). More generally, the performance and robustness
properties of GM models have been extensively analyzed within the framework of
building classified vector quantizers [1].

We use GM models instead to build classifiers for a dataset. From a set of class-
labeled training data, we can learn the underlying distributions of the sources for the
various classes by training GM models to the given data as if designing quantizers,
by means of GM clustering algorithms. Density estimates thus obtained can be used
to make classification decisions. In instances where the data for each ‘class’ is an
aggregate of several different types (for example, data from a macroclass, or as we
shall see, blocks in an image), GM models are particularly valuable because they can
account for local features in the data with a minimum of parameters.

We propose a number of classification methods built upon GM clustering algo-
rithms. In Section 2, we identify three GM clustering algorithms, including two
interesting algorithms (ECVQ and GMVQ) from quantization work, in addition to
the more traditional EM clustering algorithm. Using these, we can generate a GM
density estimate for each class from the training set of vectors. We can then clas-
sify a new vector by methods such as MAP, in which case the pdfs of the GMs are
compared.

1This work was supported by the Stanford Undergraduate Research Program under a Minor
Grant, by the National Science Foundation under NSF Grant No. CCR-0073050, and by Norsk
Elektro Optikk.



We also propose an interesting method to classify whole images, which we describe
more precisely in Section 3. Briefly, we break an image into smaller blocks and
consider the ensemble of blocks as a sample from the mixture distribution of image
blocks arising from the same image class; GM codebooks can be built for image blocks
from different block-ensemble classes. To classify a test image, we match the blocks
in the test image to the best class distribution. The ‘codebook matching’ idea has
been used before, notably in speech recognition [2]. Similar work in the past with
images has been concerned with classifying the blocks within one image for image
segmentation purposes [1, 13], or with classifying textures that recur over the image
[11], and not with directly classifying entire images that have diverse image block
characteristics.

A major advantage of classifying whole images is that we avoid the time-consuming
process of selecting semantic features to classify, by allowing the algorithm to auto-
matically distinguish between classes using available information.

Following, we provide the details of our methods in Sections 2 and 3. Experiments
that test these methods, their results, and a discussion follow in Sections 4, 5, and 6.
Section 7 concludes the paper.

2 Gauss Mixture Density Estimation

Let ξn denote ξ1, ξ2, ..., ξn. We denote an L-component Gauss mixture by G(L) ={
pL, gL

}
, where pi is the weighting or the probability of selection of the ith component

so that
∑L

i=1 pi = 1, and gi is the pdf of a Gaussian random variable drawn according
to N (mi,Ki). A random variable X drawn from a Gauss mixture G(L) has pdf of

the form fX(x) =
∑L

i=1 pigi(x), x being a real vector. Given sample data xN (in
this case, training data), we can fit a Gauss mixture distribution using the three
aforementioned methods:

ECVQ The Lloyd clustering procedure [12] used in designing entropy constrained
vector quantizers (ECVQ) is applied with Lagrangian formulated squared error
distortion (that is, MSE distortion along with a rate term). The motivation
is to use the clustering algorithm to discover local modes that can be fit with
Gaussian distributions. The algorithm converges to a partition P = {S1, ..., SL}
of the sample vectors, where Si comprises all training vectors which are mapped
into the ith codeword. To form a GM model G(L), a Gaussian mode is assigned
to each Si,

pi =
|Si|
N

;

mi =
1

|Si|
∑

xj∈Si

xj;

Ki =
1

|Si| − 1

∑
xj∈Si

(xj −mi)(xj −mi)
T .

EM A popular GM clustering procedure is the expectation maximization (EM) al-
gorithm. The goal is to maximize the expectation objective Pr(XN = xN) over
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some Gauss mixture sources from which the Xi are to be drawn i.i.d. Begin-
ning with some GM model initialization, the following updates are made in each
iteration (G(L) → G∗

(L)) to monotonically converge to a (local) maximum [1]:

νi(j) =
pigi(xj)∑L
l=1 plgl(xj)

;

p∗i =
1

N

N∑
j=1

νi(j);

m∗
i =

∑N
j=1 νi(j)xj∑N

j=1 νi(j)
;

K∗
i =

∑N
j=1 νi(j)(xj −m∗

i )(xj −m∗
i )

T

∑N
j=1 νi(j)

.

GMVQ A method used in recent work on Gauss mixture vector quantization (GMVQ)
[1, 5] applies the Lloyd algorithm directly to form the Gaussian modes in a GM.
This method uses a Lagrangian formulated asymmetric ‘distortion’ between a
data point and a pdf. Define the Lagrangian distortion between x and a pdf f
weighted by a probability p to be ρλ(x, f, p) = − ln f(x) + λ ln 1

p
. (For λ = 1,

this is equivalent to a log-likelihood calculation taking into account weighting
probabilities.) The Lloyd clustering algorithm then becomes a direct GM mod-
eling algorithm. We start with a GM model initialization. During each iteration
step, suppose we have a partition P = {S1, ..., SL} of the sample data points
xN , associated with L Gaussian modes, then we update G(L) → G∗

(L) as follows:

p∗i =
|Si|
N

;

m∗
i =

1

|Si|
∑

xj∈Si

xj;

K∗
i =

1

|Si|
∑

xj∈Si

(xj −mi)(xj −mi)
T ;

S∗i =
{
xj | arg min

l
ρλ(xj, pl, gl) = i

}
.

When too few data points remain in a partition, that partition is eliminated and
the points belonging to it are reassigned according to ρλ in the next iteration.

To avoid malformed covariance matrices (i.e. not positive definite) in Gaussian modes
due to dependence or lack of sample points, we also apply a covariance regularization
step at the end of the each run [8]. We write the final update as K∗

i = (1−α)Ki+αM
, for some α ∈ [0, 1] and where

M =
1

N − L

L∑

l=1

∑
xj∈Sl

(xj −ml)(xj −ml)
T .
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3 Whole Image Classification

In the case of image classification, we divide all images into smaller n × n blocks.
The pixel values in the blocks (or some transformation of pixel values) become the
vectors for classification purposes. Suppose each image is divided into B such blocks,
then there are B vectors per image. During training of each class, we pool all of the
vectors from the images belonging to that class. The semantic differences between
classes manifest themselves in the differences in the mixture distributions of image
blocks. When a test image is presented, the B vectors (or image blocks) within it
allow us to estimate the source distribution of the blocks of the test image.

This suggests using distribution distance to make classification decisions, and [3, 6]
provides a treatment of a distribution distance computation between Gauss mixtures.
Instead we choose to implement a simpler entropy-constrained log-likelihood method
to classify the collection of B vectors from the test image. Suppose that we have
the GM models for the K classes of data, that is, G1,(L1) =

{
pL1

1 , gL1
1

}
, ..., GK,(LK) ={

pLK
K , gLK

K

}
, constructed using the GMVQ algorithm with Lagrangian distortion mea-

sure ρλ(x, p, f) = − ln f(x)+λ ln 1
p
. The image is assigned to the class that minimizes

the distortion sum for the vectors xB obtained from the test image. Compactly, xB

is assigned to the class:

arg min
k

B∑
j=1

min
l∈{1,...,Lk}

ρλ(xj, pk,l, gk,l).

4 Experiments

Our data is provided by Norsk Electro Optikk (NEO), a company that maps the
interior walls of gas pipelines with an optical scanner. NEO intends to catalogue
features of interest (e.g. surface characteristics) in the pipeline segments. Accurate
classification of this pipeline data allows for early detection of pipeline damage, which
is of significant commercial interest. The images are grayscale with size 96×128 pixels.
In addition to the raw data, there is a derived dataset consisting of features (22 for
each image) hand-picked for their ability to distinguish classes [9, 10].

There are, in total, 12 classes in the pipeline dataset, as described in [9], corre-
sponding to various surface characteristics of the pipeline segments. We choose to
build classifiers to distinguish three macroclasses: Plain Steel (hereafter Class S),
Longitudinal Weld (Class V), and Field Joint (Class W).

Macroclass Component Classes Sample Count
S Normal, Osmosis Blisters, Black Lines,

Small Black Corrosion Dots, Grinder
Marks, MFL Marks, Corrosion Blisters,
Single Dots

153

V Longitudinal Welds 20
W Weld Cavity, Field Joint 39

We choose these three macroclasses because they present a realistic classification
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problem to test our methods upon. The macroclasses, by their very nature, are
mixtures, so GM models are well suited here.

The hand-picked (derived) dataset and the image-based dataset have very different
characteristics. In the former, vector dimension is low (22) and the information is
dense in the dimensions due to human effort. In the latter, vector dimension is high
for the whole image (128 × 96 = 122880), much of which is devoid of classifiable
content. We apply the appropriate algorithm to each dataset:

• For the hand-picked features, we choose to build classifiers by modeling the
source as a random variable in R22. We fit a Gauss mixture model to the
training data from each macroclass separately. Final classification is by MAP.
This is done for all three GM modeling methods (ECVQ, EM, and GMVQ).
(We fix λ = 1 and α = 0.01.)

• For the image-based data, we use the method described in Section 3, since prac-
tically, we cannot take the whole image as a single feature vector. Noting that
the images in our dataset have been previously stored using JPEG compression
and subsequently decompressed, we do two things to avoid JPEG artifacts. For
each image, we divide it into 192 8×8 blocks. Instead of using raw pixel values,
each 8×8 block is also Fourier transformed, and the 15 coefficients in the upper-
left triangle, with the DC component at position (1, 1), are taken and reshaped
into a vector. (In this experiment, including higher frequency coefficients be-
yond the 15 does not appear to be an improvement as they contain much JPEG
quantization noise.) Unrelated to JPEG compression, we take the magnitude of
the Fourier transform only, discarding the phase, since we are not interested in
shift variations of features in blocks. The 15 dimensional real vectors, then, are
used for training with GMVQ. We train separately for the original component
classes and combine the classification results into the three macroclasses as the
last step. (Again we fix λ = 1 and α = 0.01.)

For comparison, results are also obtained using other established classification meth-
ods (Regularized QDA, 1-NN, MART) [7] on the hand-picked features. MART is a
gradient boosted version of a classification tree [4].2 LDA fits a Gaussian with the
same covariance to each class. QDA calculates the covariance independently for each
class. Regularized QDA uses a weighted average of the LDA and QDA covariances for
each class. The image is assigned to the class with highest probability. The final al-
gorithm considered is a simple one-nearest-neighbor classifier (1-NN) using Euclidean
distance.

All methods above are run on the dataset using leave-one-out cross-validation.

5 Results

The table below shows classification results from all methods described in Section 4.
The first six algorithms classify hand-picked features whereas the final one classifies
images using the method described in Section 3. The last four algorithms are GM
based, as contrasted with the first three, which are not.

2MART was implemented using code available at http://www-stat.stanford.edu/˜jhf/
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Recall is defined to be # assigned correctly to class
# total in class

, whereas precision is defined to be
# assigned correctly to class

# total assigned to class
. Overall accuracy, defined to be # correct assignments

# total assignments
, is displayed

in the rightmost column.

Method Recall Precision Accuracy
S V W S V W

MART 0.9608 0.9000 0.8718 0.9545 0.9000 0.8947 0.9387
Reg. QDA 0.9869 1.0000 0.9487 0.9869 0.9091 1.0000 0.9811
1-NN 0.9281 0.7000 0.8462 0.9221 0.8750 1.0000 0.8915
MAP-ECVQ 0.9737 0.9000 0.9437 0.9739 0.9000 0.9487 0.9623
MAP-EM 0.9739 0.9000 0.9487 0.9739 0.9000 0.9487 0.9623
MAP-GMVQ 0.9935 0.8500 0.9487 0.9682 1.0000 0.9737 0.9717
Image-GMVQ 0.9673 0.8000 0.9487 0.9737 0.7619 0.9487 0.9481

6 Discussion

On the hand-picked feature set, the GM based methods (MAP-ECVQ, MAP-EM,
MAP-GMVQ) are competitive with the non-GM based methods, outperforming both
1-NN and MART. Arguably, MAP-GMVQ does equally well as regularized QDA. In
fact, excepting Class V, which suffers from a paucity of training and testing data,
MAP-GMVQ does somewhat better. We emphasize that we do not optimize for the
best regularization coefficient α in the GM based methods, as is done in regularized
QDA. We expect that in a completely equivalent comparison between MAP-GMVQ
and regularized QDA, (i.e. optimizing for α in both), and with enough data, the
former would do better than the latter for datasets with significant local features.

Next, we compare the three underlying GM clustering algorithms. We find that
GMVQ tends to perform slightly better than EM, here and in other test cases. ECVQ,
on the other hand, assumes nothing about the shape of the distribution during the
clustering process, and tends to overfit the data and can perform poorly at times. Con-
sistently accurate classification on different datasets empirically shows that GMVQ
can be an excellent alternative to the more popular EM method for fitting GM models
to data, considering that GMVQ converges more quickly than EM and, supplied with
a Lagrangian distortion, needs no specialized pruning procedure as EM does.

Whole image classification also performs surprisingly well compared to the other
methods, again outperforming MART and 1-NN. Though it is not as good as the best
of the others, we must keep in mind that no class-specific features are pre-selected for
this classification, which is a compelling advantage in favor of this method.

Figure 1 shows the details of this classification graphically. A large number of
image blocks in images belonging to several different classes may be similar (blocks
showing the background, for instance), so classes may have similar modes in their
GM models. However, the image blocks that are distinctive appear as distinctive GM
modes. A test image may receive similar distortions from multiple classes for those
blocks characteristic of multiple classes. However, the distinctive blocks will receive a
significantly lower distortion from the class to which they truly belong than from the
other classes. We attribute the high performance of whole image classification in this
experiment to the kind of robustness associated with examining a sample of more than
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one vector during test image classification, as well as to good signal extraction in the
form of the Fourier transform. Of course, other transforms, especially multiresolution
transforms like wavelets, may be even more appropriate if finer control over image
feature distinctions of different spatial resolutions is desired.

7 Conclusion and Future Work

We have shown empirically that Gauss mixture clustering methods developed for
quantization can be adapted to a realistic classification task. Due to their good
density modeling properties, GM models can provide high accuracy for classification
just as well as they can provide low distortion for quantization. The GMVQ clustering
algorithm appears to be an excellent alternative to the more complex EM algorithm
for GM density estimation.

An area that needs further exploration in the future is the relationship between
the distortion of a GM quantizer and the accuracy of a GM classifier. One aspect
of the relationship is the effect of λ in the Lagrangian distortion functions. We
use λ = 1 here throughout as it is a statistically meaningful value. For GMVQ, it
connects distortion to log-likelihood. Other values of λ have been tried, with the
obvious result of decreasing the number of Gaussian modes as λ increases; but it is
still unclear what effects λ has on the final classification accuracy.

The result that most intrigues us is the good performance of whole image clas-
sification using image block ensembles. This method seems very adept at encoding
locally differentiating features in the class distributions and satisfactorily classifies
the dataset at hand; to a large extent, this echoes positive outcomes of similar ideas
in image segmentation and image databases research [13, 14]. While we have used
gas pipeline images in our experiments with encouraging results, the same approach
can be applied to natural images and other images in broader contexts.
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