
Causal transmission of colored source frames over apacket erasure channelYing-zong Huang, Yuval Kochman & Gregory WornellMassachusetts Institute of TechnologyDept. of Electrical Engineering and Computer ScienceCambridge, MA 02139{zong,yuvalko,gww}@mit.eduAbstractMotivated by the streaming video application, we propose a linear predictive quanti-zation system for causally transmitting parallel sources with temporal memory (coloredframes) over an erasure channel. By optimizing within this structure, we derive anachievability result in the high-rate limit and compare it to an upper bound on per-formance. The proposed system subsumes the well-known PCM and DPCM systemsas special cases. While DPCM performs well without erasures and PCM performs wellwith many erasures, but not vice versa, we show that the proposed solution improvesperformance over them under all severities of erasures, with unbounded improvementin some cases.1 IntroductionThe coding and transmission of colored sources under a variety of constraints is a problemof practical interest. The linear predictive structure as exempli�ed by DPCM has long beenfavored in solutions to this problem for its intuitive appeal and simplicity.Classically, scalar DPCM was used for audio and scanline image and video coding, dueto its lower bit rate relative to, e.g., PCM and the practicality of sequential processing. Inrecent years, inspired by the structure of interframe motion prediction in video coders, therehas been renewed interest in the vector DPCM structure for which optimality as measuredagainst fundamental bounds was proved in several instances. In [1], it is shown that forstationary Gaussian sources, the Gaussian rate-distortion bound is achievable at all rates byvector-quantized DPCM if non-causal pre- and post-�ltering is allowed. In [2], an implicitconsequence of the analysis applied to the stationary setting shows that for Gauss-Markovsources, DPCM with causal MMSE estimation is optimal among all causal systems.In this paper, we take a line of inquiry similar to [2], but also consider channel errors.In applications such as real-time internet video conferencing, it is realistic that both acausality constraint on coding and errors during transmission are present. The combinationis particularly interesting because causality severely limits what can be done about theerrors, e.g., channel coding is impossible. Although in this paper we do not determine whatthe generally optimal coding system is for this set of constraints, we do determine what isoptimal among linear predictive structures under a few assumptions. The linear predictivestructure is chosen as a productive starting template for several reasons: (1) since the verybeginning of DPCM, it was recognized that adverse e�ects of channel errors were reduced1



by altering predictors in DPCM [3, 4]; and (2) engineering practice in, e.g., video codinggives the impression that good prediction (interframe coding) can be traded for robustnessagainst errors (intraframe coding).After we formulate the problem more precisely in Section 2, we consider the linearpredictive quantization system that generalizes both DPCM and PCM as a solution inSection 3, where we also show its behavior on simple sources. We optimize performance forgeneral stationary Gaussian sources in the high-rate limit in Section 4, and give closed-formsolutions for performance comparisons.2 Problem formulationThe practical scenario we model is the following. Frames of data indexed by time are givento the encoder to be immediately encoded (e.g., quantized) at some �xed rate and thentransmitted as packets across a link that erases packets at certain times. A decoder receiveseither the correct packet or knows the packet is erased, and immediately decodes and rendersa reproduction frame, possibly aided by intelligent concealment making up for any missingdata. Finally an end-to-end distortion is found for that rate. We look for the encoder anddecoder pair that optimizes the end-to-end distortion performance in the system. Morespeci�cally:2.1 Source modelLet {s[t]}t = {(s1[t], ..., sN [t])}t be a vector of N parallel source sequences, which can beviewed as a sequence of frames. In deference to the analogy of video coding, the bracketedindex t is the temporal dimension and the N vector components make up the typically verylarge spatial dimension. We assume the source is:1. Spatially i.i.d.: For all t, {si[t]}t is independent of {sj[t]}t whenever i 6= j, and theyhave the same distribution. We omit the spatial index i when referring to a represen-tative scalar sequence {si[t]}t should there be no ambiguity.2. Temporally autoregressive: Each scalar stream {s[t]}t is stationary AR(P ), character-ized by s[t] = z[t] +
∑P

p=1 αps[t − p], with white innovation process z[t] ∼ N (0,Σz),and α1, ..., αP such that all roots of 1 − ∑P
p=1 αpz

−p satisfy |z| < 1.Denote by Φs(f) = Σz/ |1 − A(f)|2 the power spectral density of s[t], where A(f) =
∑P

p=1 αpe
−j2πfp. The source variance is Σs =

´

1

2

−
1

2

Φs(f)df . The distortion-rate function
Ds(R) of the scalar process {s[t]}t at su�ciently high rates (R ≥ 1

2 log supf |1 − A(f)|2,where the Shannon Lower Bound is tight) is,
Ds(R) = Σz2

−2R (1)which equals the distortion-rate of the innovation process {z[t]}t (cf. [5], p. 233).In the rest of this paper we always normalize Σz = 1, so the P parameters α1, ..., αP(equivalently, A(f)) entirely characterize the source.
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2.2 Channel modelAt each time t, the channel C(·) is capable of transmitting a packet of NR bits. The channelhas two states. The channel state is an i.i.d. process described by an erasure probability ε.In the normal or no-erasure state occuring with probability 1 − ε, the input is reproducedexactly at the output. In the erasure state occuring with probability ε, the output is a speciallost packet symbol ∅ immediately recognizable by the decoder, but there is no feedback tothe encoder.2.3 Encoder and decoder modelsAt time t, the causal encoder takes current and past source vectors s[t], s[t − 1], ... as inputand produces a packet Et = E(s[t], s[t− 1], ...) of NR bits. The causal decoder takes currentand past receptions C(Et), C(Et−1), ... and outputs ŝ[t] = D(C(Et), C(Et−1), ...), a reproductionof the newest source vector s[t].2.4 Performance and objectiveThe average end-to-end distortion per scalar sample between source s[t] and its reproduc-tion ŝ[t] at time t is MSE distortion averaged over the spatial dimension: d(s[t], ŝ[t]) =
1
N

∑N
i=1(si[t] − ŝi[t])

2. De�ne the time-averaged expected distortion to be:
D(R; ε) , lim

T→∞

1

T

T
∑

t=1

Ed(s[t], ŝ[t])where expectation is taken over all source and channel realizations. The objective of theproblem is to minimize the excess distortion ratio
L(R; ε) , D(R; ε)/Ds(R) = D(R; ε)/2−2Rfor the supplied R and ε, by designing the encoder and decoder. We see later that whenlooking at the high-rate limit, it is more insightful to let R grow and ε shrink such that

λ , ε/2−2R is a �xed constant. In that case, the �gure of merit becomes
L∞(λ) , lim

R→∞

L(R;λ2−2R), (0 < λ < ∞) (2)3 Preliminary insightsIt is not known what general causal encoder/decoder pair minimizes average distortionwhen erasures are possible. However, we can consider the problem within the class of linearpredictive quantization systems for reasons of tractability and importance that such systemsplay in engineering practice. We defer the main results to the next section. In this section,we �rst show how standard DPCM and PCM perform without, then with, erasures for anAR(1) source. We then propose a way to optimize predictors for this simple source by �leakyprediction,� which is introduced here not as a novel scheme but to give intuition for moregeneral sources in Section 4.
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Figure 1: A causal, linear predictive quantization system model. Q is a quantizer codingthe N -vector x[t].3.1 Linear predictive quantization systemWhile more general structures are possible, Fig. 1 shows the linear predictive encoder anddecoder structure we consider in this paper. As required by the problem formulation, theencoder and decoder incur no delay, but both are allowed to access their entire causal historyand adapt to inputs.A �standard� (fully predictive) DPCM system for the AR(P ) source uses the P -th order�lter, with tap weights α1, ..., αP equal to the source parameters, in both the encoder anddecoder predictors. On the other hand, placing all-zero �lters in the encoder and decoderpredictors makes the system equivalent to PCM with no prediction. Therefore, the systemhere subsumes both DPCM and PCM and admits a type of continuous hybridization betweenfull-prediction and no-prediction systems.The quantizer Q takes the di�erential signal x[t] = s[t] − ∑K
k=1 βk ŝ

′[t − k] as input andoutputs x̂′[t] ∈ X̂t ⊆ RN at rate R per scalar sample (H(x̂′[t])/N = R). We model thequantizer Q as a �forward� AWGN channel, where q[t] is independent of x[t]. This is acommon abstraction and is realized via entropy-constrained dithered quantization. (See [1]for examples and further references.)Since the channel introduces erasures of an entire packet only, we neglect bitstreamencoding and decoding, by assuming the channel passes x̂′[t] itself to the decoder as x̂[t] inthe no-erasure state. The following standard �DPCM identity� [3] holds:
ŝ′[t] − s[t] = x̂′[t] − x[t] = q[t] (3)where q[t] is the quantization error and ŝ′[t] is the encoder's current reconstruction.The encoder's source-tracking signal ŝ′[t] is produced by the encoder's K-th order causallinear predictor operating on the encoder's past reconstructions: ŝ′[t] = x̂′[t]+

∑K
k=1 βk ŝ

′[t−
k]. The decoder uses an L-th order causal linear predictor to reconstruct the current sample
ŝ[t]: ŝ[t] = x̂[t] +

∑L
l=1 γlŝ[t − l].We are interested in the regime of the combination of the following limits:1. Large spatial dimension: N → ∞. This allows analyzing the scalar version of theproblem, while remembering that the quantizer Q still achieves vector quantizationperformance, as it codes numerous independent samples. If x[t] is zero-mean Gaussianwith variance Σx, the quantization error has variance

Σq = Σx/(2
2R − 1) (4)Practically, a �nite dimension su�ces, and at N = 1, results are correct up to a lossof 1

2 log(2πe
12 ) bits per scalar sample. 4



2. Sparse erasures: ŝ′[tε − 1] = ŝ[tε − 1] before an erasure at tε. This allows analyzingeach erasure separately as their distortion e�ects interact additively. This happenswhen erasures occur far apart compared to system memory.3. High rate: R → ∞. Consequently, Σq � Σz ≤ Σs.3.2 One-tap prediction for AR(1) Gaussian sourcesBefore more general results, we �rst interpret some standard systems as special cases of thelinear predictive quantization system, and show their performances for coding the relativelysimple AR(1) Gaussian source. Then we �nd their performances when there are channelerasures. Finally, we show ways to improve upon them via �leaky prediction.�3.2.1 DPCM and PCM without errorFor the standard DPCM system, the predictors are �matched� to the source and use onlyone tap of weight β1 = γ1 = α1. In this case, the di�erential signal x[t] is Gaussian withvariance Σz + α2
1Σq, and so

DDPCM(R; 0) =
Σx

22R − 1
=

1

22R − 1 − α2
1Contrast this with the PCM encoder, which achieves distortion-rate

DPCM(R; 0) =
Σs

22R − 1
=

1

(1 − α2
1)(2

2R − 1)For R > 1/2 (all R if the quantizer Q is optimal), we observe that DDPCM(R; 0) <
DPCM (R; 0) for all α1 6= 0, as is well known.13.2.2 DPCM and PCM with errorWhen an erasure occurs, the encoder-decoder asynchrony replaces the quantization error
q[t] by an error which equals −x[t] instead, which then gets �ltered through the decoderpredictor loop. With an imperfect channel, the choice of decoder for a given encoder becomesless obvious.Under DPCM, where we still use β1 = γ1 = α1, the distortion-rate function is

DDPCM(R; ε) = DDPCM(R; 0) + ε

[

1

1 − α2
1

− 1 − 3α2
1

1 − α2
1

DDPCM(R; 0)

]For PCM, β1 = γ1 = 0 is standard. However, for the sample on which an erasure occurs, thedecoder can do signi�cantly better by switching to the DPCM decoder (γ1 = α1). When werefer to PCM throughout the remainder of the paper, we will always mean PCM with thisdecoder modi�cation during erasures. Therefore,
DPCM(R; ε) = DPCM(R; 0) + ε

[

1 − (1 − α2
1)DPCM(R; 0)

]It can be veri�ed that there is some critical error threshold ε0(R) such that DDPCM(R; ε) <
DPCM(R; ε) if ε < ε0 but DDPCM(R; ε) > DPCM(R; ε) if ε > ε0.1It is also known that a single-tap, source-matching predictor is not optimal for the no-erasure case exceptin the high-rate limit [6, 7]. 5



3.2.3 One-tap leaky predictionThe fact that neither PCM nor DPCM dominates over all error severities suggests that amore �exible predictor in the encoder, coupled with a suitable predictor in the decoder, canimprove performance over both schemes.In lieu of the extremal encoder predictors of DPCM (β1 = α1) or PCM (β1 = 0), weoptimize over all one-tap predictors β1. The result is sometimes termed �leaky prediction�[8], as some of the original signal energy in s[t] leaks through to the next time step. UnlikeDPCM or PCM, there is no standard �leaky prediction� system as a convention to draw onfor the decoder predictor. Nevertheless, analogous to the DPCM or PCM cases, we use adecoder matched to the encoder predictor (i.e., γ1 = β1) when there are no erasures, and aDPCM predictor (i.e., γ1 = α1) whenever there is an erasure. 2Without erasures, the error signal s[t]−ŝ[t] has variance Dleaky(R; 0) = Σq. The quantizerinput is x[t] = (α1−β1)s[t−1]−β1q[t−1]+z[t]. As the summands are mutually independentterms, the distortion amounts to
Dleaky(R; 0) =

[

1 +
(α1 − β1)

2

1 − α2
1

]

(22R − 1 − β2
1)−1When there is an erasure at time tε, the encoder-decoder asynchrony propagates error for

t ≥ tε, and replaces the no-erasure identity ŝ[t]−s[t] = q[t] by ŝ[t]−s[t] = q[t]−β(t−tε)(z[tε]−
α1q[tε − 1] + q[tε]). Taking these errors into account, the distortion rate function is

Dleaky(R; ε) = Dleaky(R; 0) + ε

[

1

1 − β2
1

− 1 − α2
1 − 2β2

1

1 − β2
Dleaky(R; 0)

]Fig. 2 shows that the optimal amount of prediction �leakage� as captured by β1 = β∗produces a hybrid between DPCM and PCM, and shifts from better prediction (DPCM,
β∗ → α1) to better error resilience (PCM, β∗ → 0) as the error severity ε increases. Fig. 3shows leaky prediction outperforming both DPCM and PCM.3.2.4 High-rate limitIn the high-rate limit, the performances in terms of excess distortion ratio (2) become:

L∞

DPCM(λ) = 1 + λΣs = 1 +
λ

1 − α2
1

(5)
L∞

PCM(λ) = Σs + λ =
1

1 − α2
1

+ λ (6)
L∞

leaky(λ) =

[

1 +
(α1 − β1)

2

1 − α2
1

]

+
λ

1 − β2
1

(7)All three expressions show distortion composed of two terms, the �rst being distortion causedby quantization, and the second, distortion caused by channel erasures. In DPCM the �rstterm is smaller than in PCM, at the expense of the second being larger, as expected. Inthe high-rate limit, the threshold for PCM being better than DPCM is met with λ = 1, i.e.,
ε0(R) = 2−2R. However, in leaky prediction, the encoder predictor β1 adjusts the weightbetween the two terms, and can be optimized for a given λ, therefore outperforming bothPCM and DPCM.2Or, equivalently, when an erasure occurs, we use the error-free decoder but �simulate� the missingdecoder input as x̂[t] = (α1 − β1)ŝ[t − 1]. 6
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Figure 2: Encoder predictor β1 = β∗ thatminimizes Dleaky(R; ε) for R = 3 bits/sampleand various values of α1 = {0, 0.1, 0.2, ..., 0.9}(bottom to top).
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Figure 3: DPCM, PCM, and one-tap leakyprediction performance compared for anAR(1) source with α1 = 0.7, R = 3. The crit-ical error threshold is nearly ε0(R) = 2−2R.4 Main resultsThe previous section shows that for AR(1) sources, one-tap leaky prediction gives betterperformance than DPCM and PCM. As we will see shortly, one-tap predictors are notoptimal for AR(1) sources when there are erasures, even in the high-rate limit. In thissection, we derive optimized predictors for the linear predictive quantization system forcolored Gaussian sources in the high-rate limit.In order to be able to evaluate the systems we develop more meaningfully, we �rst developa performance bound that no causal system can outperform.4.1 Performance boundAs before, Ds(R) is the distortion-rate function of the source s[t]. D∆(R) is the averageadditional distortion for each erasure under some particular scheme, and Dε is the averagedistortion on just the erased sample. The distortion can be lower-bounded as:
D(R; ε) = (1 − ε)D(R; 0) + ε(D(R; 0) + D∆(R))

≥ (1 − ε)Ds(R) + εDε

≥ (1 − ε)2−2R + ε

D(R; 0) ≥ Ds(R) by the de�nition of the distortion-rate function. D(R; 0) + D∆(R) isthe total distortion on and following an erasure at some time tε, which is greater than thedistortion at tε only, which is in turn lower-bounded by the error variance of the optimalpredictor of s[tε] from its entire causal past s[tε − 1], s[tε − 2], .... This is simply the varianceof the innovation process Σz = 1.In the high-rate limit, the excess distortion ratio satis�es
L∞(λ) ≥ 1 + λ (8)
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Figure 4: Performance comparison (λ = 2) between three systems and the bound of (8), forsources in Example 3. The performance gaps from both DPCM or PCM to the system withoptimized parameters is unbounded when u is taken arbitrarily large.4.2 Achievable performance for colored sources at high rateWe have the following result on the performance achievable by schemes of the form of Fig.1.Theorem 1. Let s[t] be a stationary Gaussian source with power spectral density Φs(f) andunit entropy power, i.e., Ns = exp
´

1

2

−
1

2

log Φs(f)df = 1. The excess distortion ratio (2) of
L∞(λ) = min

Φv(f):Nv=1

ˆ 1

2

−
1

2

Φs(f)

Φv(f)
df + λ

ˆ 1

2

−
1

2

Φv(f)df (9)is achievable, where Φv(f) is any valid power spectrum and Nv is its entropy power.We call the minimizing Φ∗

v(f) the spectrum of a virtual source. The optimal encoderpredictor to achieve this L∞(λ) is the DPCM predictor for this virtual source, not for theactual source s[t]. We will also see that this encoder predictor is a spectral compromisebetween the DPCM predictor and PCM predictor for s[t].It is easily veri�ed that L∞(λ = 1) is achieved by Φ∗

v(f) =
√

Φs(f).Example 2. Applying the λ = 1 case to an AR(1) Gaussian source, the virtual sourcespectrum √

Φs(f) = 1/
∣

∣1 − α1e
−j2πf

∣

∣ is clearly not AR(1). Thus, the possibility of a one-tap optimal encoder predictor for s[t] is precluded.Example 3. Applying the result beyond �nite-order AR(P ) sources, let s[t] be a coloredGaussian source with a two-level spectrum: Φs(f) = u > 0 for |f | ≤ 1/4 and Φs(f) = u−1 for
1/4 < |f | ≤ 1/2. (Note that with these parameterization, Ns = 1 for all u > 0.) The optimalvirtual source spectrum will also be two-level, i.e., Φ∗

v(f) = v∗ for |f | ≤ 1/4 and Φ∗

v(f) =
v∗−1 for 1/4 < |f | ≤ 1/2. The minimization (9) then amounts to minv>0 u/v+v/u+λv+λ/v.Solving gives v∗ =

√

(λ + u)/(λ + u−1). 8



Figure 5: The equivalent system at the decoder. When a sample is not erased, the entiredecoder implements 1/(1−B(f)). When a sample is erased, the �rst two �lters are e�ectivelybypassed as the decoder sets ẑ[t] to 0.Compare with LDPCM(λ) = 1 + λ
(

u + u−1
)

/2 and LPCM(λ) = (u + u−1)/2 + λ forthis source. For u � 1, L∗(λ) grows as √
u, while LDPCM(λ) and LPCM(λ) both grow as

u, so the performance gap, as measured by excess distortion incurred by DPCM or PCMover the proposed system, can be arbitrarily large. Fig. 3 compares these systems and theperformance bound.4.3 Achieving the performance by predictive schemesLet B(f) =
∑K

k=1 βke
−j2πfk, Γ(f) =

∑L
l=1 γle

−j2πfl be respectively the frequency-domainrepresentations of the encoder and decoder predictors. Let {·}∗ denote the causal minimum-phase �lter with spectrum in the argument. We show next that a linear predictive quanti-zation system, with encoder predictor B∗(f) = 1 − {1/Φ∗

v(f)}
∗
, decoder predictor Γ∗(f) =

B∗(f) on a non-erased sample, and decoder predictor Γ∗(f) = 1− {1/Φs(f)}
∗
on an erasedsample, achieves L∞(λ) in Theorem 1.Without erasures,

Σs−ŝ =

∣

∣

∣

∣

1 − 1 − B(f)

1 − Γ(f)

∣

∣

∣

∣

2

Σs +

∣

∣

∣

∣

1 − B(f)

1 − Γ(f)

∣

∣

∣

∣

2

Σx(2
−2R − 1)so in the high-rate limit, Σs−ŝ is minimized by choosing a matched decoder predictor Γ(f) =

B(f), leaving the error-free distortion as
D∗(R; 0) = Σx2

−2R (10)where Σx =
´

1

2

−
1

2

Φx(f)df =
´

1

2

−
1

2

|1 − B(f)|2 Φs(f)df . The minimal D∗(R; 0) can be achievedby choosing the unique stable, strictly causal predictor B(f) that minimizes Σx. Thisoccurs when Φx(f) is white, hence |1 − B(f)|2 = Ns/Φs(f) and the optimal error-freeencoder predictor is B(f) = 1 − {Ns/Φs(f)}
∗
. For example, an AR(P ) source {s[t]}t withinnovation variance Σz = 1 has power spectral density Φs(f) = 1/ |1 − A(f)|2 from Section2.1. The optimal error-free encoder predictor B(f) is then the standard source-matchingDPCM predictor B(f) = A(f), as expected.When erasures are possible, the encoder predictor B(f) is time-invariant as the encoderreceives no feedback. However, the decoder can adapt. Referring to Fig. 5, suppose the de-coder internally derives an estimated innovation sequence {ẑ[t]}t by �ltering {x̂[t]}t through

1/(1 − B(f)) followed by 1 − A(f). The decoder is to produce the best estimate of s[t] byapplying a third �lter, which we claim to be 1/(1−A(f)). In the high-rate limit, ẑ[t] → z[t].An erased sample of x̂[t] corresponds to a missing sample of ẑ[t], which the decoder �patches�with its best causal estimate Eẑ[t|t − 1, t − 2, ...] = Ez[t] = 0. It is clear that the patched9



innovation sequence ẑ[t] contains all the information the decoder has about s[t] and apply-ing the reconstruction �lter 1/(1 −A(f)) to ẑ[t] reconstructs the best estimate of s[t]. Thismeans that, for unerased samples, the decoder's e�ective decoder predictor is Γ(f) = B(f),while for erased samples, it is Γ(f) = A(f). Furthermore, this adds an error propagationprocess that is ẑ[tε]δ[t − tε] �ltered by 1/(1 − B(f)), whenever x̂[tε] is an erased sample. Inthe high-rate limit, this results in an additional distortion of D∆ =
´

1

2

−
1

2

1/ |1 − B(f)|2 df foreach erasure. Thus, the average distortion with erasures for this setup is
D∗(R; ε) = D∗(R; 0) + εD∆ = 2−2R

ˆ 1

2

−
1

2

|1 − B(f)|2 Φs(f)df + ε

ˆ 1

2

−
1

2

1

|1 − B(f)|2
df (11)Substituting in λ = ε/2−2R as previously de�ned gives immediately

min
Φv(f):Nv=1

L∞

∗
(λ) = min

Φv(f):Nv=1

ˆ 1

2

−
1

2

Φs(f)

Φv(f)
df + λ

ˆ 1

2

−
1

2

Φv(f)dfthereby proving Theorem 1. Analogous to (5), (6), there are two terms in (9), in which the�rst is caused by quantization and the second by channel erasures. The choice of encoderpredictor B(f) again weights the two terms. We can interpret Φv(f) = 1/ |1 − B(f)|2 as thepower spectral density of some virtual source v[t] against which B(f) is trying to predict.Depending on λ, which is the severity of erasures relative to the error-free quantizationerror, the optimizing virtual source is either spectrally more like s[t] (smaller λ) or morewhite (larger λ). If the virtual source spectrum matches Φs(f) of the real source, then B(f)implements DPCM and L∞

∗
(λ) = 1 + λΣv. If the virtual source spectrum is white, then

B(f) implements PCM and L∞

∗
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