
A Class of Compression Systems
with Model-Free Encoding

Ying-zong Huang and Gregory W. Wornell
Dept. Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Email: {zong,gww}@mit.edu

Abstract— Practical compression systems are constrained by
their bit-stream standards, which define the source model to-
gether with the coding method used. We introduce a model-free
coding architecture that separates the two aspects of compression
and allows the design of potentially more powerful source models,
as well as more flexible use of the compressed information
stream. We show that this architecture is capable of producing
competitive performance while supporting new use cases.

I. INTRODUCTION

Data compression has two conceptually separate aspects:
source modeling and coding. In the current widely used
systems, it is the compressed bit-stream that is standardized,
and therefore, both the source model and the coding strategy
are implicitly defined. For example, the JPEG image com-
pression standard implicitly defines a source model based on
decorrelated values in the discrete cosine transforms (DCT)
domain, and assigns Huffman coding or arithmetic coding as
the methods for extracting residual entropy and representing
codewords.

In general, the choices of source model and coding strat-
egy at the time of standardization may not be optimal, and
these become difficult to change later. Moreover, there is an
entanglement of the source modeling and coding aspects that,
so far, has led to conceptually restrictive design choices, e.g.
asking for a simple entropy coder imposes that the source
has a representation that is easy to code; and transmitting
compressed streams under network irregularities often requires
breaking the encapsulation to deal with the source model.

In this paper, we describe an architecture for compression
in which the encoder only makes choices about coding, and
produces a compressed bit-stream agnostic to the source model
(or indeed, to any information-preserving transformation of the
source). It instead leaves to the decoder to apply the relevant
knowledge about the source. The compressed stream is a
true information stream in that it can be re-ordered, partially
lost, accumulated from multiple origins, etc. We call such
compression systems as having “model-free” (MF) encoders,
or as simply “model-free” coding systems.1

This work was supported in part by Draper Laboratory through the UR&D
Program and by AFOSR under Grant No. FA9550-11-1-0183.

1In universal compression such as Lempel-Ziv, there is no prior knowledge
of the source model, so it is learned and used within the encoder. In model-
free coding, the source model is not used in the encoder whether available or
not.

As an illustration of what is possible within this architecture,
we explore constructions based on graphical models and
iterative decoding, and show that model-free coding can be
competitive with existing compression systems while adding
new features. While we are motivated by practical concerns,
we are guided by information theory, which gives meaning to
source modeling as codebook construction and to coding as
assigning codebook index according to an indexing scheme.
This interpretation we shall defer to a discussion near the end.

A. Prior work and contribution

Relevant prior work comes from several areas.
In distributed coding, there is interest in using “data-like”

side information for compression. As in [1], key frames supply
side information in Wyner-Ziv video coding. As in [2], [3],
the secret key is the side information in the decoding of
encrypted compressed data. More broadly, works such as [4]
and references therein testify to a wide range of compression
problems that take advantage of “data-like” side information.

In compressed sensing, “structure-like” side information
such as sparsity is used for reconstruction with fewer mea-
surements [5]. In works such as [6], structures additional
to sparsity are exploited — in this case, wavelet-domain
structures for the sensing of images.

The common thread in these works is this: the encoder
decimates the data to a lower rate by a relatively simple
process (e.g. projection, sub-sampling); and the decoder, which
possesses side information about the source, chooses the cor-
rect sample from among the numerous otherwise ambiguous
possibilities. Our work builds on this suggestive idea in several
ways, noting that:

1) the decimation process can be any code;
2) the side information can be any source model;
3) the choice of code can be agnostic to the source, i.e.

model-free.

With this view, we propose a compression architecture based
on random hashing as model-free encoding, and inference over
combined source model and coding constraints as decoding.
To our knowledge, such a combination has not been attempted
for compressing general sources. While we believe this archi-
tectural assertion is valid for a wide variety of compression
problems, this paper considers essentially the case of lossless

compression with known source model. Furthermore, we re-
strict attention to decoders based on graphs — graphical source
models, codes on graphs, belief propagation on graphs.

As a well studied and algorithmically rich general inferential
toolkit [7], [8], graphical methods have become useful to com-
pression or signal reconstruction problems, see for instance
[9], [10]. More closely relevant, graphical source models are
used for direct image reconstruction given some cutset pixels
reminiscent of trivial coding [11], and low-density codes on
graphs show good performance for compressing structureless
(i.e. memoryless) sources [12].

B. Paper organization

A basic system construction for direct compression is de-
scribed in Section II. A generalization that handles serialized
sources of any alphabet size is described in Section III. In
Section IV, performance on some sources is reviewed. Finally,
in Section V, we leverage model-free coding to compress
encrypted data without the secret key to demonstrate new
features this architecture enables.

II. BASIC SYSTEM CONSTRUCTION

We describe a prototype of model-free coding and sketch
the requisite components that make a working compression
system.

A. Core components

Suppose s is an n-vector drawn from a Markov random
field (MRF) p(s), and H is a k × n parity-check matrix of a
rate rcode = k/n LDPC code. Both are over GF(q).

1) Encoding algorithm: The encoder is nearly trivial. Using
H as the encoding matrix, it produces

x = Hs (1)

as the compressed result. k is chosen so that rcode = k/n
is the nominal compression rate. The encoder produces some
additional output described in Section II-B.

2) Decoder structure – the code subgraph: Since H en-
forces k hard constraints of the form xa =

∑
i∈S Ha,isi, it

can be represented by a bipartite factor graph C = (S∪X,F),
where there are k factor nodes X = {x1, ..., xk} and n source
nodes S = {s1, ..., sn}. There is an edge between factor node
xa and source node si if and only if Ha,i 6= 0.

The number of edges between factor and source nodes
scales the difficulty of inference on C. In LDPC factor graphs,
the number of edges (and thus complexity) grows linearly with
the source length n so it is entirely feasible.

3) Decoder structure – the source subgraph: The MRF
p(s) can be represented by an undirected graph G = (S =
{s1, ..., sn}, E) over the n source nodes S = {s1, ..., sn}, in
the sense that p(s) is factored over the maximal cliques of G:

p(s) =
1

Z

∏
C∈cl(G)

ψC(sC) (2)

This expression can represent any source model, but the
complexity of inference on G depends on the number of

cliques and their sizes [13]. Not all compressible structures
in data (in the computational sense) result in low-complexity
factorization in the native domain of s, but many do. In
particular, we are interested in the less general pairwise
factorization:

p(s) =
1

Z

∏
i∈S

φi(si)
∏

(i,j)∈E

ψij(si, sj) (3)

If indeed p(s) has this factorization, then inference has com-
plexity at most quadratic in source length n. We use this
factorization in subsequent parts, but note that the essential
methods apply to the general factorization (Eq. 2) as well, if
the equivalent factor graph is substituted.

4) Decoding algorithm: The decoder runs (loopy) belief
propagation on the combined source-code graph U = (S ∪
X,E ∪ F) where the source nodes S are shared between the
source and code subgraphs (Fig. 1a). For each source node si,
there is an edge with potential ψij(si, sj) to each of its source
neighbors sj∈ N Gi . There is an attached node potential φi(si),
sometimes interpreted as bias. There is an edge to each of its
factor node neighbors (i.e. compressed symbols) xa ∈ N Ci .
For each factor node xa, there is an edge to each of its source
node neighbors sk ∈ N Ca . Messages are passed along all edges.
However, we do this modularly by alternating between source
message passing and code message passing.
• Source message update: Let ma→i(si) be the message (a

function over the alphabet of si) from the code subgraph
factor xa to the source node si. Let mk→i(si) be the
message from the source subgraph neighbor sk to si.
For each sj ∈ N Gi , we update the message mi→j(sj)
according to standard sum-product as

mi→j(sj) ⇐
∑
si

 ∏
xa∈NC

i

ma→i(si)

 (4)

φi(si)ψij(si, sj)
∏

sk∈NG
i \sj

mk→i(si)

where the bracketed term is the code subgraph belief
at si encapsulated as an external message to the source
subgraph.

• Code message update: Let mb→i(si) be the message from
the factor node xb to its connected source node si. We
update the source-to-factor message mi→a(si) from si to
a factor node xa to which it is connected, according to
standard sum-product as

mi→a(si) ⇐

 ∏
sj∈NG

i

mj→i(si)φi(si)

∏

xb∈NC
i \xa

mb→i(si) (5)

where the bracketed term is the source subgraph belief
at si encapsulated as an external message to the code
subgraph.
Next, we update the factor-to-source message. Define

(a) (b) (c)

Fig. 1: The structure of the combined decoder source-code graph U for the system in (a) Section II; (b) Section III; and (c)
Section V.

an indicator for the code subgraph contraint xa =∑
i∈S Ha,isi as a function over the source nodes in N Ca :

fa(N Ca) =

{
1

0

if constraint satisfied
if not

Let mj→a(sj) be the message from the source node sj to
the factor xa to which it is connected. For each si ∈ N Ca ,
we update the message ma→i(si) from xa to si according
to standard sum-product as

ma→i(si)⇐
∑
NC

a \si

fa(N Ca)
∏

sj∈NC
a \si

mj→a(sj)

The algorithm is run until convergence or declaration of
failure. In the first case, final decoding uses the standard belief
equation, which is interpreted as combining partial beliefs
from the two subgraphs.
• Belief update:

ŝi = arg max
si

 ∏
xa∈NC

i

ma→i(si)

 ∏
sj∈NG

i

mj→i(si)φi(si)

(6)

B. Doping symbols

Depending on the source model, the decoding process may
not begin without some initial beliefs. Therefore the encoder
randomly selects a fraction rdope of source nodes to describe
directly to the decoder. These known “doping” symbols anchor
the decoding process, and only a small amount — which can
be optimized — is necessary. We can consider the doping
process as augmenting H with additional unit-weight check
rows to make the true encoding matrix H ′ with true coding
rate r = rcode + rdope, and encoding as x = H ′s.2

2We do not need to communicate the actual content of the matrix H or
the locations of the selected doping symbols, if the encoder/decoder pair
synchronize on a single random seed. This can be done out-of-band, or the
random seed can be included in an initial uncoded header.

C. Parameter estimation

If the decoder does not have access to the full source model,
it needs to learn the missing portion from data, generally by
training on known samples, or sequentially on the history of
decoded data. But it would be useful if decoding can take place
with a partial model. This is the case if the source model is
among a parametric family for which parameters are unknown.
The following is a heuristic that jointly estimates parameters
within the decoding loop itself.

Suppose s is drawn from p(s; θ) where θ denotes unknown
parameters. Define the checksum-correctness objective

F (ŝ) =
1

k
‖Hŝ− x‖ (7)

where ‖·‖ is some appropriate norm (e.g. `0). At each iteration
t of the decoding algorithm (Section II-A.4), evaluate F (·)
on the contemporary source estimate ŝ(t)(θ) obtained from
the total belief update (Eq. 6). The value θ∗ that minimizes
F (ŝ(t)(θ)) among choices in a neighborhood Bδ(t)(θ

(t−1)),
for some diminishing sequence δ(1) > δ(2) > · · · > 0 of
bounded sum (e.g. δ(t) = δ/αt for δ > 0, α > 1), is chosen
as the parameter estimate θ(t) for that iteration. At the end of
decoding, the sequence of estimates for θ are also converged
within some neighborhood.

D. Rate selection

In model-free coding, if the encoder processing does not
involve a simulation of the decoding process or upstream hints
— which would be the case if the encoder has no source model
or cannot access raw data — the encoder cannot anticipate the
exact minimum rate to decode. In communication scenarios,
some feedback from the decoder is required, such as by
acknowledgement of sufficiency as x is sent letter-by-letter.
In storage scenarios, this feedback can be used to truncate the
compressed output after the fact.

III. GENERALIZED CONSTRUCTION

In Section II-A, we introduced a basic compression system
where we assumed the source s and the code as represented by

H are over the same field. If coding is to be truly model-free,
perhaps it is not realistic to assume the field structure or even
the alphabet size of s is known. In real systems, even though s
may be highly structured internally, it is often presented to the
compression system after it has already been serialized into an
opaque bit-stream. LDPC codes and decoding algorithms as
well are well developed for GF(2) and we would want to
keep using these no matter the alphabet size of the source.
Next we describe how to compress in this setting by inserting
a translation layer.

A. Representation and translation

Suppose s = {s1, ..., sn} is an abstract n-symbol source
serialized by symbol-level representational maps. For ease of
discussion, we assume all si belong to the same alphabet S
of size M , and so there is one map for all n symbols, though
this need not be the case. The representation map is a bijective
function tM→q : S → GF(q)B where B ≥ logqM . For
integer symbols si serialized into GF(2), this can be as simple
as their machine representations, or other binary expansions
like Gray-coding. Likewise, let tM→q : Sn → GF(q)nB

operate on an n-tuple symbol-by-symbol in the obvious way.
When belief messages are passed to or from source nodes,

there are related messages on their serialized representations.
Define a pair of message translation functions TM→q : (S →
R+)→ (GF(q)→ R+)B and Tq→M : (GF(q)→ R+)B →
(S → R+) that convert between a message m(M) over S and
a B-tuple of messages m(q) = m

(q)
1 , ...,m

(q)
B over GF(q).

Assuming messages are properly normalized probabilities, for
ω ∈ {1, ..., B} and β ∈ GF(q),

TM→q(m
(M))ω(β) =

∑
α∈S

m(M)(α)1 {tM→q(α)ω = β}

and for α ∈ S,

Tq→M (m(q))(α) =

B∏
ω=1

m(q)
ω (tM→q(α)ω)

These conversions just state that m(M) is a product of
marginals m(q)

1 , ...,m
(q)
B , which is not true in general, so there

is some potential for loss.

B. Generalized encoding

Encoding takes place in the representational domain of bit-
streams, which because of this, should also be called the
code domain. Given an LDPC parity-check matrix H ∈
GF(q)k×nB and rate rcode = k/nB, the compressed output is

x = Hz = HtM→q(s) (8)

C. Generalized decoding

Recall in Sections II-A.2-II-A.4, the code subgraph C =
(S∪X,F) and the source subgraph G = (S = {s1, ..., sn}, E)
share the n source nodes S = {s1, ..., sn} in U . This is no
longer the case here.

Instead, let G = (S = {s1, ..., sn}, E) and C = (Z ∪X,F)
where Z = tM→q(S). The combined source-code graph is

U = (S∪Z∪X,E∪F) (Fig. 1b). The message passing strictly
within each subgraph is unchanged from Section II-A.4, but
whenever messages cross alphabet/representation boundaries
they are translated. Refer to the inset labeled Algorithm 1 on
how this is done.

D. Doping symbols

The doping process can occur in either domain, but more
naturally it occurs in the code domain unless the represen-
tational map is known to the encoder, e.g. it is the encoder
that applies serialization. Whichever domain this takes place
in, some nodes in U become observed variables with definite
messages, and we obtain the equivalent effect in the other
domain by message translation.

IV. PERFORMANCE

We characterize the compression performance of the system
on two sources.

A. Synthetic bi-level images

Sample bi-level images are drawn from a stationary 2D Ising
model common in computer vision research. The source model
is Eq. 3 with φ(1) = 1−φ(0) = pbias and ψ(0, 0) = ψ(1, 1) =
1 − ψ(0, 1) = 1 − ψ(1, 0) = pstay. The graph G = (S,E) for
an h×w image has n = hw source nodes, one for each pixel,
and an edge between every neighbor pair of pixels in the four
cardinal directions for a total of 2hw − (h + w) edges in E.
Here, we focus on the case of pbias = 1/2 and pstay ∈ [1/2, 1]
(Fig. 2). For these values, the entropy rate at each pstay is
known [14].

(a) (b) (c) (d) (e)

Fig. 2: 100 × 100 Gibbs sampled images according to the
model in Section IV-A. pbias = 1/2. From left to right, pstay =
0.5, 0.6, 0.7, 0.8, 0.9.

1) Results: We generate 100×100 Gibbs samples from this
source and compare average rate performance over 20 trials at
each parameter value of pstay. Rate performance (output bits
per input bit) of the proposed system is compared against some
common compressors:
• MF: The system proposed in Section II (“MF” for model-

free). An off-the-shelf library of regular-(6,3) binary
LDPC codes is used. The rate performance denotes the
minimal total rate r for which decoding converges (in
this case, within 100 iterations) to the correct result.

• JBIG2: This state-of-the-art bi-level image compressor is
based on 2D context dictionaries. We operate the encoder
in lossless mode. The output length is the file size of
raw-stream compression, less the compressed file size of
a 1-pixel image to account for headers.

Algorithm 1 Decoding with message translation.
Let N Ci,ω denote the neighbors of zi,ω = tM→q(si)ω in X ,
• Source message update:

m
(M)
i→j(sj)⇐

∑
si

[
m

(M)
C→i(si)

]
φi(si)ψij(si, sj)

∏
sk∈NG

i \sj

m
(M)
k→i(si) (9)

where m(M)
C→i(si) = Tq→M

(∏
xa∈NC

i,1
m

(q)
a→i,1(zi,1), ...,

∏
xa∈NC

i,B
m

(q)
a→i,B(zi,B)

)
(si).

• Code message update (source to factor):

m
(q)
i,ω→a(zi,ω)⇐

[
m

(q)
G→i,ω(zi,ω)

] ∏
xb∈NC

i,ω\xa

m
(q)
b→i,ω(zi,ω) (10)

where m(q)
G→i,ω(zi,ω) = TM→q

(∏
sj∈NG

i
m

(M)
j→i(si)φi(si)

)
ω

(zi,ω);
and (factor to source):

m
(q)
a→i,ω(zi,ω)⇐

∑
NC

a \zi,ω

fa(N Ca)
∏

zj,ω′∈NC
a \zi,ω

m
(q)
j,ω′→a(zj,ω′) (11)

• Belief update:

ŝi = arg max
si

[
m

(M)
C→i(si)

] ∏
sj∈NG

i

m
(M)
j→i(si)φi(si)

 (12)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

p
stay

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

GZIP
JBIG2
MF−avg
BP−threshold
entropy−100x100
entropy−∞

Fig. 3: Rate performance compared among three compression
algorithms on 100 × 100 synthetic bi-level images (see Sec-
tion IV-A). Entropy bounds for the infinite-extent Ising model
and the 100× 100 Ising model are also plotted for reference.

• GZIP: This Lempel-Ziv class universal compressor oper-
ates on the raw image bitmap as a 1D scanline stream.
The output length is the compressed file size, less the
compressed file size of a zero-length file to account for
headers.

Additionally, in the case of MF, for each minimal rate LDPC
code found, we can identify its BP decoding threshold (for the
BEC), εBP. This threshold rate serves as a more accurate proxy
for the “utilizable” rate of that code than its total rate r, in
that the gap between r and εBP is not primarily an architectural
loss, but that associated with poor code selection. Better code
selection such as through degree-distribution optimization or
e.g. [15] can be expected to close the gap.

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

st
at

e

Fig. 4: A sample path of the Markov source of Section IV-B
with entropy rate 0.5.

Referring to Fig. 3, in the low-rate regime (pstay nearer
to 1), the performance of MF beats GZIP, rivals JBIG2, and
is very close to the best possible (entropy bound). In the
high-rate regime, excess rate of MF is attributed to the lower
BP decoding threshold of the particular chosen LDPC code.
Overall it strongly suggests that with a properly chosen LDPC
code (outside the scope of our work), MF performs well over
all regimes for this source.

B. Large alphabet sources

Homogenous Markov chains over a cyclic group ZM are
among the simplest large-alphabet sources with memory. Here
we model a family of Wiener-process-like, smoothly transi-
tioning Markov chains over ZM by defining transition prob-
abilities as discretized Gaussian densities of certain variances
centered around the current state, i.e the self transition has the

current state

ne
xt

 s
ta

te

50 100 150 200 250

50

100

150

200

250
0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

entropy

ou
tp

ut
 b

its
 p

er
 in

pu
t b

it

GZIP
MF−avg
BP−threshold
entropy−∞

Fig. 5: On the left is depicted the transition matrix of an 8-bit
Markov chain (Section IV-B) with entropy rate 0.9 (brighter
value is higher probability; the bright band would be narrower
at lower entropies). On the right is the rate performance
comparison of compressing the Markov chains by MF and
GZIP, compared to source entropy.

highest probability, followed by “nearer” neighbors:

P {st+1 = mt+1|st = mt} = P
{
|mt+1 −mt| −

1

2

< Z < |mt+1 −mt|+
1

2

}
Here, mt+1 −mt is understood cyclically, and Z ∼ N (0,Σ)
for some Σ.

1) Results: We generate Markov chains of this type over
Z256 with length 1000, beginning at steady state (Fig. 4).
They are compressed by the system in Section III, using the
Gray-coding representational map. A range of entropy rates
are targeted by adjusting the variance parameter Σ for the
Gaussian densities that underlie the transition probabilities.
There are 20 trials for each entropy rate. We compare MF with
GZIP, with the same compressor setup as in Section IV-A;
here, GZIP compresses the Z256 symbols as a stream of bytes
in their canonical representation.

We see in Fig. 5 that the MF performance is very close to the
entropy lower bound, especially when accounting for the BP
threshold rates rather than nominal rates. GZIP performance
is poor, and does not improve substantially even when sample
length is increased to 100,000.

This is a positive result in that one may expect some
loss due to the non-bijective message translation procedure
in MF, but coding for this large alphabet source is remarkably
efficient. We conjecture that the symbol-level macro-structure,
being preserved by the source subgraph, is repeatedly injected
into the inference by the iterative nature of decoding, so that
the message translation loss is not significant over multiple
iterations. Although the existence of pathological sources
cannot be ruled out without further investigation, it at least
appears that this architecture retains the macro-structure of
the source better than would independent coding of bit planes,
which is another commonly used approach for large alphabet
sources.

Fig. 6: Compressing an encrypted source with a model-free
coding system. The already encrypted bits are presented to
the encoder to compress, which without the secret key, is
impossible to do with a traditional encoder.

V. AN ENABLED APPLICATION: COMPRESSING AN
ENCRYPTED SOURCE

We now describe an encryption system that benefits from the
model-free coding framework. Refer to Fig. 6 for the system
diagram.

A. Encrypted encoding

Sometimes the owner of data wishes to retain total secrecy,
and so presents to the compressor a version of the data that
has already been encrypted by, e.g., adding a secret key to
its bit-stream representation. In the language of Section III,
the encoder receives tM→2(s)⊕k where k = {k1, ..., knB} is
nB bits of key from a one-time pad to go along the nB bits
representing s. Normally, this stream is totally uncompressible
without the encoder also having the key. However, since our
encoder is model-free, we can simply view ⊕k as part of the
representational map and apply coding to tM→2(s) ⊕ k ≡
t′M→2(s).

B. Encrypted decoding

Note that in U , the code subgraph is entirely encrypted since
z = tM→2(s)⊕k is encrypted and x = Hz is encrypted. Note
further that the source subgraph is entirely unencrypted since
s, the object of decoding, is unencrypted. Therefore the en-
cryption boundary coincides with the representation boundary
(Fig. 1c). Then apply generalized decoding of Section III-C,
using t′M→2 and the corresponding T ′M→2 and T ′2→M pair. In
practice this means during each iteration, m(M)

C→i(si) is obtained
by message decryption followed by conventional translation
T2→M , and m(q)

G→i,ω(zi,ω) by conventional translation TM→2

followed by message encryption, with the rest of the decoding
algorithm unchanged. With the key, message encryption and
decryption simply amount to permuting the labels of symbols
in messages.

VI. DISCUSSION

While it seems fortuitous that combining a graphical source
model and a factor graph for an LDPC code could directly
result in a practical decoder for compression systems, this is in
fact rooted firmly in the information theory of source coding.
In that theory, the source p(s) plays a role in the generation
of a random codebook of typical codewords. The compressed
output is solely concerned with conveying the index into this
codebook, while the codebook itself is shared between encoder
and decoder, and does not need to be conveyed. This shared
knowledge of the codebook, which is exactly to be interpreted
as the source model, is the root of all compression gain, and
the basis of model-free coding. We may now interpret p(s) not
as the source model itself, but as the kernel from which the
codebook can be independently reconstructed at the decoder.

In a model-free encoder, only the size of the codebook
(hence, rate r) is needed to create an index from hashing the
data itself. The actual content of the codebook is irrelevant.
In the decoding process, inference over the source subgraph
G plays the role of dynamically re-generating from p(s) a
portion of the codebook near the doping initialization, while
inference over the code subgraph C plays the role of hash
verification. Rather than an exponential-time enumeration of
the entire codebook, the decoding process is guided by the
low-complexity inversion of the hash function due to the spar-
sity of C. This class of compression systems with model-free
encoding continue to intrigue us because they operationalize
source coding theory in this direct yet feasible way.

VII. CONCLUSION

We presented a model-free coding framework and several
variations of system constructions that enable the practi-
cal compression of structured data, large-alphabet data, and
encrypted data, with promising performance characteristics.
The use of inference to support source modeling and cod-
ing/decoding in a compatible framework opens up many
possibilities of innovation in source models and new avenues
of effectively processing and communicating data.

REFERENCES

[1] A. Aaron, S. D. Rane, E. Setton, and B. Girod, “Transform-domain
Wyner-Ziv codec for video,” in Proceedings of SPIE, vol. 5308, 2004,
pp. 520–528.

[2] M. Johnson, P. Ishwar, V. Prabhakaran, D. Schonberg, and K. Ramchan-
dran, “On compressing encrypted data,” IEEE Transactions on Signal
Processing, vol. 52, no. 10, pp. 2992–3006, Oct. 2004.

[3] D. Schonberg, S. Draper, and K. Ramchandran, “On compression of
encrypted images,” in Proceedings of the International Conference on
Image Processing, 2006, pp. 269–272.

[4] S. Jalali, S. Verdu, and T. Weissman, “A universal scheme for Wyner-Ziv
coding of discrete sources,” IEEE Transactions on Information Theory,
vol. 56, no. 4, pp. 1737–1750, Apr. 2010.

[5] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[6] L. He and L. Carin, “Exploiting structure in wavelet-based bayesian
compressive sensing,” IEEE Transactions on Signal Processing, vol. 57,
no. 9, pp. 3488–3497, 2009.

[7] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential
families, and variational inference,” Foundations Trends in Machine
Learning, vol. 1, pp. 1–305, 2008.

[8] T. Richardson and R. Urbanke, Modern Coding Theory, Mar. 2008.

[9] M. Wainwright, E. Maneva, and E. Martinian, “Lossy source compres-
sion using low-density generator matrix codes: Analysis and algorithms,”
IEEE Transactions on Information Theory, vol. 56, no. 3, pp. 1351–
1368, Mar. 2010.

[10] V. Chandar, D. Shah, and G. W. Wornell, “A simple message-passing
algorithm for compressed sensing,” in 2010 IEEE International Sympo-
sium on Information Theory Proceedings (ISIT), Jun. 2010, pp. 1968–
1972.

[11] M. G. Reyes, “Cutset based processing and compression of markov
random fields,” Ph.D. dissertation, The University of Michigan, 2011.

[12] G. Caire, S. Shamai, and S. Verdú, “Noiseless data compression with
low-density parity-check codes,” DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, vol. 66, pp. 263–284, 2004.

[13] B. Potetz and T. Lee, “Efficient belief propagation for higher order
cliques using linear constraint nodes,” Computer Science Department,
May 2008.

[14] D. Cimasoni, “A generalized Kac-Ward formula,” J. Stat. Mech., 2010.
[15] S. Kudekar, T. Richardson, and R. Urbanke, “Threshold saturation via

spatial coupling: Why convolutional LDPC ensembles perform so well
over the BEC,” IEEE Transactions on Information Theory, vol. 57, no. 2,
pp. 803–834, Feb. 2011.

