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Abstract

Two aspects of compression — data modeling and coding — are not always conceived as distinct,
nor implemented as such in current compression systems, leading to difficulties of an architectural
nature. This work contributes an alternative “model-code separation” architecture for compression,
based on iterative message-passing algorithms over graphical models representing the modeling and
coding aspects of compression. Systems following this architecture resolve important challenges
posed by current systems, and stand to benefit further from advances in the understanding of data
and the algorithms that process them.

1 Introduction

In compression, data modeling refers to introducing prior knowledge, i.e. data model,
into the system; coding refers to assigning the compressed output to each input. In a joint
model-code architecture, the two tasks are treated as one. The classical random codebook
scheme of Shannon source coding theory is an example. Current systems, which often
take the form of Fig. 1, likewise have this architecture despite the appearances of encoder
decomposition; upon inspection, there is no clear delineation that isolates data modeling
from compressive coding.

In terms of system design, a joint model-code architecture is limiting. It embeds design-
time assumptions, particularly about the data model, deeply into the entire system, and it
requires a great deal of expert cleverness to realize a new system for each data type. Many
domains now generate prolific datasets with complex statistical structure, e.g. financial time
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Figure 1: Current compression systems have a joint model-code architecture. Process (often a
representational transform) removes the bulk of the structural redundancy from data, while Code
(entropy coding) compresses simple, usually memoryless, residual structures. The data model is
used to design both Process and Code together.
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Figure 2: System diagram for the model-code separation architecture. On the left is a model-free
encoder. On the right is an inferential decoder.

series, bioscience data, search/ranking/social media databases, etc., and joint architecture
design for such data is challenging. Computing paradigms too are evolving, e.g. towards
mobile acquisition devices backed by cloud servers on a network, and demand a flexibility
with respect to information and complexity allocation within the system pipeline. Some
important requirements for contemporary and future compression can benefit from new
architectural thinking, among them —

(1) Design flexibility: We should have a design process that effectively utilizes vari-
ous sources of data knowledge, whether it be expert knowledge, or increasingly, machine
knowledge. (2) Upgrade flexibility: Once we design a system, we should have a method to
easily change various parts of the system in order to make improvements, in particular in
the data model. (3) Security: If the data is stored with an untrusted third party provider, we
want it to be compressible in the encrypted domain, securely. (4) Mobility: We want our
power constrained mobile devices to have state-of-the-art compression capability even with
a lightweight encoder. (5) Distributivity: Our data may be distributed across a network of
machines or sensors, and we want them to be locally compressible. (6) Robustness: Net-
works may corrupt compressed data with losses, and we should allow recovery mechanisms
without changing the compression mechanism.

Contribution and prior work — This paper presents a practical, alternative model-code
seperation architecture for general data compression (Fig. 2). The architecture divides
into a part for data modelers and a part for coding theorists, mediating them using the
common language of graphs and message-passing algorithms. In the canonical realiza-
tion, a model-free encoder only makes choices about coding, and produces a compressed
bit-stream agnostic to the data model (or indeed, to any information-preserving transfor-
mation of the source); it instead leaves to an inferential decoder to apply the data model.
Separation allows us the flexibility to alter the data model without affecting the underlying
redundancy-extraction machinery (i.e. coding). The compressed stream on which stan-
dards are defined is also a true information stream that can be re-ordered, partially lost,
accumulated from multiple origins, etc. Architecturally, separation incurs no performance
penalty, and practically we show separation systems obtaining performance competitive
with and sometimes superior to existing solutions.

We are aware of no prior work offering model-code separation as a practical architecture
for general compression, though it must have been known as a theoretical possibility: the
Slepian-Wolf random binning scheme applied to a single source has this architecture. Sub-



sequent applications have been in decoder side-information problems that feature partial
data model separation from coding (though not stated as such), and involve some inferen-
tial decoding, e.g. in Wyner-Ziv video coding [1], encrypted compression [2, 3], univer-
sal Lempel-Ziv with refinement [4], and other “data-like” side-information problems; and
in sparse reconstruction [5], Bayesian compressed sensing [6], and other “structure-like”
side-information problems. More recently, graphical model representations and coding
algorithms have also converged in signal reconstruction problems, e.g. in compressing
memoryless sources [7], in image reconstruction given “code-like” side information [8], in
sensing [9], in lossy compression [10], and in the dual problem of coding for channels with
memory [11, 12, 13]. Our work brings these constructions together in a new light.

2 Basic system

The model-code separation system here presented is a practical realization of the oth-
erwise NP-hard Slepian-Wolf scheme for arbitrary sources. In Slepian-Wolf, we see key
components that enable model-code separation: randomized bin assignment as model-free
coding, and typicality as model representation. We replace these with two lower complex-
ity analogs: low-density parity-check (LDPC) codes for coding, and probabilistic graphical
models (PGM) for model representation. These are good choices for two reasons: (1) low-
complexity message-passing methods are empirically good for LDPC decoding and data
inference individually, and there is reason to believe the same remains the case for com-
pression [14]; (2) without a complexity constraint, linear codes achieve entropy rate for
general sources [7] and exact inference can be computed on PGM’s, so no architectural
loss is incurred for these choices.

In this section objects are over the alphabet S = GF(q). To compress an n-vector
sequence sn ∈ Sn, we assume (1) a stochastic data model sn ∼ psn from which sn is drawn;
(2) a coding ensemble H (n, k) of k × n parity matrices of a rate k/n LDPC source code
(i.e. rate 1− k/n LDPC channel code). Construct the following encoder and decoder.

2.1 Encoder

Setting k to target a nominal rate rcode = k/n, and choosing a random H ∈ H (n, k),
produce a hash xk = Hsn as the compressed result.

2.2 Decoder

Code and source subgraphs — H is represented by a factor graph C = (S,X ,F) where
S , {s1, ..., sn} and X , {f1, ..., fk} are respectively source and factor nodes. An edge
connects fa ∈ X and si ∈ S if and only if Ha,i 6= 0, forming the neighborhood N Ca of fa.
The code subgraph C models the hash constraint function

c(sn) ,
k∏
a=1

fa(sNC
a

) =
k∏
a=1

1

xa =
∑

i:Ha,i 6=0

Ha,isi

 (sNC
a

) (1)

where c(sn) = 1 if and only if all constraints are satisfied. This graph is identical to that
used in LDPC channel code decoding.
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Figure 3: (a) The structure of the combined decoder source-code graph U for the system in Section
2. (b) The differently colored subgraphs behave as if modular components connected via dashed
virtual ports.

psn is represented by an undirected source subgraph G = (S, E) over the maximal
cliques of which it factors:

psn(sn) =
1

Z

∏
C∈cl(G)

ψC(sC) (2)

In the interest of clarity, the sequel only describes algorithms over pairwise models where
each ψC(·) is unary or binary:

psn(sn) =
1

Z

∏
si∈S

φi(si)
∏

(si,sj)∈E

ψij(si, sj) (3)

Decoding algorithm — Let U , G ∪ C = (S,X , E ∪ F) be a combined source-code
graph, where the source nodes S are shared between the source and code subgraphs (Fig.
3a). The decoder runs belief propagation (BP) on U , representing approximate maximiza-
tion on the joint objective

u(sn) , c(sn)psn(sn) (4)

The full BP consists of iteratively computing local functions called messages to and from
neighbor nodes called ports. The following are the main nodal computations for decoding
(µj←i is a source-side message in the variable sj at node si out on port sj; mi←a and mi→a

are respectively a code-side message in the variable si at node fa on port si, and one at node
si on port fa; N Gi , N Ci , N Ca are respetively neighborhoods of si in G, si in C, and fa in C):

µj←i(sj) ⇐
∑
si

ψij(si, sj)φi(si)
∏

sk∈NG
i \sj

µi←k(si)

 ∏
fa∈NC

i

mi←a(si)

 (5)

mi→a(si) ⇐
∏

fb∈NC
i \fa

mi←b(si)

 ∏
sj∈NG

i

φi(si)µ
i←j(si)

 (6)



mi←a(si) ⇐
∑
NC

a \si

fa(sNC
a

)
∏

sj∈NC
a \si

mj→a(sj) (7)

Additionally, there is a total belief computation and marginal decoding

ŝi = arg max
si

 ∏
fa∈NC

i

mi←a(si)

 ∏
sj∈NG

i

φi(si)µ
i←j(si)

 (8)

BP is run over multiple iterations until convergence or declaration of failure.
Decoding complexity scales with both coding and data model complexity. If C has

largest factor degree ρ, and G has κ unfactorizable cliques and maximum unfactorizable
clique size η, then the combined graph U has BP decoding complexityO((k |S|ρ+κ |S|η)I),
where I is the number of iterations. This compares favorably with ML decoding atO(n |S|k),
if max{ρ, η, log κ} � k. For LDPC codes and all the finite-order models we see later in
this paper, complexity is O(n).

Modular architecture — The bracketed terms of (5) and (6) may be conceptualized
as single lumped messages that do not change with respect to which port the output is
emitted on. Therefore, when a node of S emits on one subgraph, the lumped message
from the other subgraph can be pre-computed and treated like an external message on
a virtual port opened on the latter’s side. This means BP on U is exactly the same as
BP on each subgraph alone, with the simple addition of an external I/O port and some
computation to figure the external message. This makes the entire system architecturally
modular, with external messages and virtual ports acting as the only interface between
graph-inferential components. Finally, while each component can compute a total belief (8)
using these external messages, it makes sense for a main controller to handle component-
agnostic operations. The functional factorization and suggested interfaces are given in Fig.
3b.

2.3 Schedule, doping, rate selection

BP scheduling is much simplified by the modular architecture, which focuses decisions
at the level of component interactions. A parallel schedule would have each component
compute internal messages, then exchange external messages at the same time. A serial
schedule would have one component active at a time, and present its latest external mes-
sages to the next component. This serial schedule, alternating between source message
passing and code message passing, is what we use in this work. Within a component, we
use a parallel schedule.

Depending on the data model, the decoding process may not begin without initial be-
liefs. Therefore the encoder may randomly select a fraction rdope of source nodes D ⊆ S
to describe directly to the decoder. In decoding these are presented as deterministic mes-
sages dD(sD) = 1{sD=sD}(sD) in the controller and multiplied into all external messages
passing through it. These “doping” symbols also anchor the decoding process, and only
a small amount — which can be optimized — is necessary. If we consider doping as a
part of the code, where we augment H with additional unit-weight checksum rows to rate
r = rcode + rdope, then doping can be jointly optimized with the code.

The system presented can be used in many ways. For the direct fixed-rate, no-feedback
setting, the model-free encoder needs the compression rate to be specified. This may come



from entropy estimates or upstream hints, analogous to capacity estimates in channel cod-
ing. However, nothing precludes building a traditional zero-error variable-rate system if
we wish to bind the data model in the encoder. The presented encoder can simply be
augmented with a decoder simulation and choose the rate at which the simulated decod-
ing succeeds. If feedback is available, the decoder can acknowledge sufficiency as xk is
sent letter-by-letter. This immediately obtains a zero-error rateless system. In a broadcast
setting, even feedback is not necessary [15]. Likewise in a storage setting, we can begin
with a high rate (e.g. uncompressed), and truncate the compressed sequence xk if we later
discover we can decode at a lower rate.

3 Large alphabets and processed data

The basic compression system of Section 2 assumes the data and the code are over the
same field S = GF(q). While the study of non-binary LDPC coding is progressing, LDPC
codes and decoding algorithms are still most well developed over GF(2). Furthermore, it
may not be ideal to need to match the alphabet of each source with a tailored code. If we
work with GF(2) codes, however, we need to handle large-alphabet data with care. One
traditional method is bit-planing, i.e. treating the bits representing a letter in a larger alpha-
bet as independent GF(2) sources. However, this neglects correlation between bit planes.
Instead, we take the more general approach of inserting into the decoder an additional
subgraph that models how symbols of sn are represented in another alphabet.

Suppose sn = {s1, ..., sn} is an abstract n-symbol data sequence serialized by symbol-
level representational maps. For ease of discussion, we assume all si belong to the same
alphabet S of size M , and so there is one map for all n symbols, though this need not
be the case. The representation map is a bijective function tM→q : S → GF(q)B where
B ≥ logqM . For integer symbols si serialized into GF(2), this can be as simple as
their machine representations, or other binary expansions like Gray-coding. Likewise, let
tM→q : Sn → GF(q)nB operate on an n-tuple symbol-by-symbol in the obvious way.

When messages are passed to or from source nodes, there are related messages on their
serialized representations. Define a pair of message translation functions TM→q : (S →
R+) → (GF(q) → R+)B and Tq→M : (GF(q) → R+)B → (S → R+) that convert
between a message m(M) over S and a B-tuple of messages m(q) = m

(q)
1 , ...,m

(q)
B over

GF(q). Assuming messages are properly normalized probabilities, then for ω ∈ {1, ..., B}
and β ∈ GF(q), TM→q(m(M))ω(β) ,

∑
α∈S m

(M)(α)1 {tM→q(α)ω = β}; and for α ∈ S,
Tq→M(m(q))(α) ,

∏B
ω=1 m

(q)
ω (tM→q(α)ω).

Now we have the tools to compress large-alphabet data. Given a binary LDPC parity
matrix H ∈ GF(2)k×nB and rate rcode = k/nB, the compressed output is

xk = HznB = HtM→2(sn) (9)

Decoding takes into account this additional serialization step in (or prior to) the encoder,
and applies the message translation functions during BP. It is unnecessary to work out
what replaces (5)-(8), due to modularity. Architecturally, message translation is an isolated
function. Recalling Fig. 3b, we can consider this construction as a decoder extension by
the addition of a batch of message translator components that interface with an updated



…

SS

ZZ

ControllerController
…

…

tM!qtM!q

T
ra
n
sl a
t o
r

T
ra
n
sl a
t o
r

(a) Message translator

…

££

G4 componentG4 component

psn(s; µ)psn(s; µ)

SS

(b) Augmented data model

Figure 4: In extensions of the basic model-code separation architecture, new modular components
may be added or swapped into the decoder to compress (a) large alphabet data, or (b) with a para-
metric model.

controller that holds both the source symbols S = {s1, ..., sn} and the serialized bits Z =
{zi,1, zi,2, ..., zi,B} (Fig. 4a). The controller further interfaces to the usual, unaltered source
component over the alphabet S and code component over GF(2).

This design is useful for many more processing situations than just translating between
alphabets. The controller is a central manager that holds all the relevant state nodes of
importance to decoding, and that connects to a variety of components representing inde-
pendent prior knowledge about the relationship between the nodes, such as may be induced
by encryption, quantization, channel coding, etc.

4 Uncertain models

Graphical models can represent model uncertainty very naturally. We consider two
cases: (1) when there is a mismatch between the “true” model and the assumed model, (2)
when the “true” model is “partially known,” i.e., as belonging to a parametric family of
models, and we may only assume it is one among the family.

Model mismatch — Compressing using the incorrect data model results in the per-
formance degradation suggested by large deviation theory. Given input data drawn from
a source distributed as psn(sn) but decoding using a source subgraph modeling q(sn), is
equivalent to approximate maximization of u′(sn) , c(sn)q(sn). Theory suggests for ex-
act maximization that coding takes place at rate approaching

R(psn , q) , lim
n→∞

1

n
E(− log q(sn)) = H(s) +

1

n
D(psn||q) (10)

Since this rate serves the same role as entropy rate does when there is no mismatch, we
expect and indeed find similar relative performance.

Parametric models — Suppose we are to compress a Bern(θ) source with unknown
θ ∈ [0, 1]. While θ is deterministic, we can construct a Bayesian belief pΘ(θ) for it, and
assume the true θ is drawn from a random variable Θ ∼ pΘ. Thus we can write the joint
distribution (sn,Θ) as

psnΘ(sn, θ) = pΘ(θ)
n∏
i=1

psi|Θ(si|θ) (11)



Given a graph G for a Bern(p) data model, we can augment the nodes S = {s1, ..., sn} by a
node Θ, connected to all of them via additional factors π(si, θ), in the augmented graphical
model G4 for (sn,Θ). Fig. 4b shows a component form. If we connect G4 with the code
graph C, we can run BP to optimize over the new objective u4(sn, θ) , c(sn)psnΘ(sn, θ).
We will marginalize over both each si and Θ, but of course we only care about the former
— the latter estimate of θ is a side effect.

This construction can be extended in many directions of practical interest. For example,
we can have a prior on Θ itself. It can be extended to offline or online learning, by retaining
the belief on Θ across multiple samples. It can be extended to hierarchical models (e.g.
hidden Markov models), taking hidden variables as unknown parameters.

5 Performance

A representative range of parameter values for each type of data is selected, and 20
random samples are drawn at each paramter value by Gibbs sampling. The average rate
performance (output bits per input bit) is reported for the following compressors:1

• SEP-prot: An model-code separation system with off-the-shelf library of binary
LDPC codes (H column weight 3, quasi-regular). Doping rate rdope is fixed and
noted. Rate performance denotes the minimal rcode + rdope for which decoding con-
verges (in this case, within 150 iterations) to the correct result.

• SEP-thresh: The adjusted rate performance εBP+rdope associated with SEP-prot.
This can be viewed as another (idealized) system instance. The BP decoding thresh-
old εBP of an LDPC code [16] serves as a better proxy for the “utilizable” rate of
a code than rcode, in that rcode − εBP is not primarily an architectural loss, but that
associated with code selection and decoding method. Coding optimization such as
with [17, 18] can be expected to close the gap.

• ARITH: Arithmetic coding with symbol probabilities supplied.

• GZIP: Lempel-Ziv class universal compressor. Input data is pre-flattened to a bit-
stream. Output length is the compressed file size, less the compressed file size of a
zero-length file to account for overhead.

• CTW: Context-tree weighting universal compressor. Input data is pre-flattened.

• JBIG2: Bi-level image compressor (ITU-T T.88; 2000) in lossless mode (based on
2D context dictionaries). Output length is compressed file size, less the compressed
file size of a 1-pixel image to account for overhead.

Universal compressors are included for reference, in particular for when there are no better
matched compression algorithms

The results for Fig. 5a-d are respectively for the Bernoulli source parameterized by its
bias p, the binary Markov source parameterized by recurrence probability q, the 2D lattice

1ARITH is implemented in MATLAB’s Communications System Toolbox (v5.5) as arithenco; GZIP is
implemented in standard GNU distributions as gzip (v1.5); CTW is found at http://www.ele.tue.nl/
ctw/download.html (v0.1); JBIG2 is found at http://github.com/agl/jbig2enc (v0.28).
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Figure 5: Performance of various model-code separation systems.

Ising model with edge potential ψij(si, sj) = q1{si=sj} + (1− q)1{si 6=sj} parameterized by
q, and a Wiener-process-like Markov source over Z256 with state transition matrix [q(u,v)]
parameterized by its entropy h.2 In Fig. 5d, GZIP100K and CTW100K are performances
when compressing over n = 100, 000.

Generally SEP-thresh has excellent performance. SEP-prot is just as good at
lower rates while some performance gain is possible at high rates with the choice of a better
code; this behavior is also known from channel coding analogs. For Markov sources, CTW
is able to capture the data structure better than GZIP at the same data length, but only
reaches performance similar to SEP-thresh at longer data lengths. For the 2D Ising
model, only JBIG2 approaches SEP performance, while GZIP and CTW have substantially
similar performance, being unable to capture the 2D context well. Part of the reason is that,
traditional context-based compressors encode causally, thus they refer to a portion of the
data already encoded, thereby losing the performance attributable to the true unrestricted
context that SEP can access.

2This particular case has q(u,v) ∝ P
{
|u− v| − 1

2 < Z < |u− v|+ 1
2

}
, with |u− v| ,

min{|u− v| , |256− (u− v)|} understood cyclically, and Gaussian Z.



6 Conclusion

Although today’s compression systems have served us well and given us popular solu-
tions, they are limited by their joint model-code architecture to more restrictive design and
usage scenarios. Compression systems going forward need to meet a variety of require-
ments by making the best use of available technology and data knowledge. We presented
a model-code separation architecture and several system constructions that show the ease
with which practical compression is possible. More broadly, we provided an open frame-
work within which more participants can think about and experiment with their favorite
aspects of compression.
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