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Abstract—High-performance Model-Code Separation (MCS)
architectures for lossless compression are practically viable with
graphical message-passing in the decoder. This paper extends
separation architectures to lossy compression by constructing
model-free but semantics-aware encoders and contributes a
new inference-friendly low-density hashing quantizer (LDHQ)
to support decoding.

Index Terms—lossy compression, rate distortion, quantization,
graphical inference

I. INTRODUCTION

In lossless compression, two distinct architectural styles
for system design are possible. Shannon’s classical proof of
achievability based on random codebook generation leads to
schemes in which a data model is bound into the coding
structure itself, typically in the encoder. This design, a Joint
Model-Code (JMC) architecture, is prevalent in nearly all
existing compression systems. On the other hand, Slepian-
Wolf coding based on random binning leads to schemes
in which the data model is treated as informationally and
structurally separate from the code. In [1] we proposed a
practical realization of this Model-Code Separation (MCS)
architecture (Fig. 1), based on a modular, message-passing
decoder. MCS has considerable advantage over traditional
JMC in terms of systemic flexibility. Certain applications like
encrypted compression require the data model to be concealed
from the encoder, and more generally we would like data
models to be freely upgradeable. Separation that allows us
to place distinct types of information in their proper locations
in the system pipeline in compression — and more broadly,
communication — systems is highly useful. This paper turns
to the setting of lossy compression and shows how properly
constructed separation is possible there.

II. PROBLEM SETTING AND BACKGROUND

Consider an input string sn = s
1

, ..., sn as drawn from a
probabilistic source s

n ⇠ psn . When the typical set of s

n is
too large to represent losslessly (e.g. infinite in size), or we
are unwilling to expend enough bits to represent each of its
elements distinctly, we resort to lossy compression where sn 2
Sn is mapped to a reproduction ŝn 2 Sn, where generally
sn 6= ŝn. The mapping is evaluated under a distortion measure
dn : Sn ⇥ Sn ! R�0 to assess its average distortion level

¯dn , Edn(sn,ˆsn) (1)
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Figure 1: A canonical system with Model-Code Separation,
with a model-free hashing encoder and a message-passing
inferential decoder binding a data model.

The lossy compression problem under present consideration
is to minimize the average distortion level for a given average
rate budget, and vice versa.

Rate-distortion theory [2], [3] defines the rate-distortion
function as

R(�; s) , lim

n!1

1

n
R(�; s

n
) = lim

n!1

1

n

 
inf

p̂sn|sn :

¯dn�
I(sn;ˆsn)

!

(2)
whose value lower bounds the average number of bits required
to represent each symbol of sn to within average distortion
level �.1 The distribution p⇤

ˆsn on ˆ

s

n that achieves the infimum
in Eq. 2 is the optimal reproduction distribution, and in a lossy
compression analog of the Shannon random codebook scheme,
it is used directly to achieve R(�; s) but gives a JMC design.

In prior literature, Wyner-Ziv coding is suggested as the
lossy compression counterpart to Slepian-Wolf coding. In
Wyner-Ziv coding, additional side information yn = y

1

, ..., yn
drawn from (s

n, yn) ⇠ psnyn is available at the decoder, and
compression rate can be improved to

RWZ
(�; s|y) , lim

n!1

1

n

 
inf

p̂sn|sn :

¯dn�
[I(sn;ˆsn)� I(ˆsn; yn)]

!

(3)
with a scheme that uses an intermediate codebook drawn
according to pWZ

ˆsn , the distribution on ˆ

s

n that achieves the
infimum in Eq. 3, then followed by random binning. This
style of coding is sometimes exploited in video compression,

1Notationally, R(�; s) is more commonly written as R(�) with the source
s understood. The theory holds for (1) stationary ergodic sources of bounded
total distortion, i.e. Ed

n

(sn, ŝn) < 1, and (2) finite-span distortion measures
d
n

(sn, ŝn) = (n � g + 1)�1 Pn�g

k=0 d(s
k+1,...k+g

, ŝ
k+1,...,k+g

), where
d : Sg ⇥ Sg ! R�0.



for example, to enable scalable quality improvement and error
resilience [4], [5], [6], [7], [8].

Wyner-Ziv coding has the ingredients of separation but falls
short. (If we consider yn to be a hidden variable on which s

n

depends, then there is partial model-code separation, but it
is not clear that we can remove all non-coding information
to the decoder without forsaking compression gain entirely.)
This is because there are two types of non-coding information
in lossy compression: the entropic information provided by
the data model, and the semantic information provided by the
distortion measure.

In the sequel, we propose a separation for lossy compression
that keeps semantic information in the encoder and removes
entropic information to the decoder. We show this architecture
can be realized as an extension of the practical MCS system al-
ready constructed for lossless compression, with an additional
quantizer component that explicitly supports low-complexity
inferential decoding. We also show the performance implica-
tions of this separation.

III. PROPOSED SYSTEM

Since entropic information and semantic information are
inherently different, we need a more nuanced separation design
than in Fig. 1. In particular, it can be shown that naive hashing
in the absence of semantic information is catastrophic, so lossy
coding must be quantization-like, and the distortion measure
must accompany it within the encoder to make semantics-
aware decisions. However, nothing prevents the data model
from being separated from coding; indeed practical lossy
compression systems for complex data essentially quantize
in the absence of the data model (e.g. images [9], videos
[10]). Thus in addition to Model-Code Separation, another
separation principle emerges in lossy compression between
processing that binds a data model and processing that binds
a distortion measure. We call it Model-Quantizer Separation
(MQS). Together, we have a design for lossy compression (Fig.
2).

To compress an n-symbol string s

n 2 Sn, we require (1)
a stochastic data model s

n ⇠ psn ; (2) a distortion measure
dn : Sn ⇥ Sn ! R�0; (3) a collection of quantizers indexed
by l, Quantizel : Sn ! Ql, along with a choice map � :

Q⇤ ! Sn; (4) a coding ensemble H (l, k) of k ⇥ l parity
matrices of a rate k/l LDPC source code over some alphabet
Z; and (5) (optionally) a representational map t|Q|!|Z| : Q !
Zlog|Q|/ log|Z| for serializing quantizer output to the alphabet
of the code — for simplicity let us assume both are already
binary. Construct the following encoder and decoder.

A. Model-free encoder

The encoder performs model-free quantization, followed by
model-free coding.

Quantization — Setting l to target an average distortion
level �, quantize s

n to q

l 2 Ql by

q

l
= Quantizel(s

n
) (4)

the average distortion level being

¯dn = Edn(sn,�(Quantizel(sn))) (5)

Coding — Setting k to target an overall compression rate
of r = k/n bits per input symbol, choose a random Hk⇥l 2
H (l, k), and produce a hash

x

k
= Hq

l (6)

as the compressed result. This step is the same as in model-
free lossless encoding.

The encoder setup here captures various types of traditional
and non-traditional quantization, from vector quantization
[11], to coded quantization such as in [12] and locality-
sensitive hashing [13], [14].

B. Inferential decoder

The decoder performs message-passing inference on a
composite graph combining information on the data model,
the quantization procedure, and the coding. Briefly, in this
graph (Fig. 3(a)), there are nodes for variables of input
S , {s

1

, ..., sn} and quantizer output Q , {q
1

, ..., ql} (and
serialized output Z , {z

1

, ..., zl} if appropriate); there are also
nodes for factors relating to the data model ( , not shown), to
the quantization processing ( Q ), and to the coding (X ). The
belief-propagation (BP) algorithm is executed over the entire
graph.

At any time, to trial decode ŝn, first let �b
(qb) be the belief

on each qb, then we computing q̂l as

q̂b = argmax

qb
�b

(qb) (7)

and apply ŝn = �(q̂l). If BP converges, and the inferred values
of q̂l = Quantizel(ŝ

n
) = q

l and x̂k
= Hq̂l = x

k are correct,
then decoding succeeds, and we achieve the rate-distortion pair
(r,�).

Note that the graphical models for the data model (G =

(S, , E)) and coding (C = (S,X ,F)) portions, as well as
message-passing for them, are unchanged from lossless coding
[1], and indeed there is a sub-block that performs lossless
compression with model-code separation on the quantizer
output, within the presently discussed system. The only portion
newly added is a graphical model of the quantization process
(Fig. 3(b)).

To be concrete, let us next describe encoding and decoding
for a particular quantizer that we construct — a very different
kind of quantizer than what exists.

IV. LOW-DENSITY HASHING QUANTIZER

Beginning with the inferential decoder design in mind, we
can propose a new quantizer design that is more directly
suitable than existing quantizers in some combination of ease
of implementation, complexity, and performance in graphical
decoding.

Referring to Fig. 3, a general full vector quantizer would
involve one Q factor that connects to all S nodes, and
producing one large-alphabet output Q = {q}. However,
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Figure 2: System diagram for a lossy compression architecture featuring model-quantizer separation (MQS) and model-code
separation (MCS). The encoder is model-free but distortion measure aware.
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Figure 3: The structure of the decoder inference graph (top),
and the modularized quantizer component (bottom) for separa-
tion architecture lossy compression. This top drawing assumes
a pairwise model on data (factors  along edges not shown),
and serialization between Q and Z (may be omitted in some
settings).

since we would follow that with serialization to take Q to
binary symbols Z , we can consider the vector quantizer to
be equivalently decomposed into a multitude of bitwise Q

factors each producing one bit qi 2 Q. Each Q now acts like
a one-bit quantizer or bit hash. For Q implementing arbitrary
functions, the complexity can still be exceedingly high, given
its O(n) neighborhood — a full vector quantizer still has high
complexity even to produce 1 bit.

A natural reduction is to connect each Q not to all
the S nodes but only to some, giving rise to a product
quantizer structure [11]. If the connection is sparse enough, the
collection of bitwise quantizers may be called a low-density
hashing quantizer (LDHQ).

Now let us describe encoding and decoding with the LDHQ
for the binary Hamming case.

A. Quantization function

Each bitwise quantizer Q implements a specific quantiza-
tion function, defined as follows in terms of its decoder.

Connect Q to a random � nodes of S: {sj1 , sj2 , ..., sj�} ✓
S , so let s = sj1 , sj2 , ..., sj� . Let u 2 S� be a random vector
called the reference point. Let ū, i.e. the inversion of u, be
called the antipodal point. Then,

Quantize

1

(s;u) =

8
><

>:

0 if d�(s, u) < d�(s, ū)

1 if d�(s, u) > d�(s, ū)

q ⇠ Bern( 1
2

) if d�(s, u) = d�(s, ū)

defines a 1-bit stochastic quantizer (we can also use a deter-
ministic tiebreak for the third case). Since d�(s, u)+d�(s, ū) =
�, the quantization function can be computed trivially by

Quantize

1

(s;u) = {d�(s, u) R �

2

} (8)

B. LDHQ in encoder

We only describe the quantization step of Section III-A. To
quantize s

n, setting l to target the total number of quantization
bits — this sets the target distortion — choose a random
bipartite graph L = (S,Y, ·), where Y , {g

1

, ..., gl} denotes
the l Q factor functions, and the degree on each gb is
�b. Write Ab = NL

b for the neighborhood of gb on the S
side. Choose also a collection of random reference points
U = {u

1

, u
2

, ..., ul}, ub 2 S�b . Apply

q

l
= Quantizel(s

n
;U ,L) (9)

,

2

6664

Quantize

1

(sA1 ;u1

)

Quantize

1

(sA2 ;u2

)

...
Quantize

1

(sAl ;ul)

3

7775

This is followed by coding as usual.2

2U , L, just as H , are to be generated pseudo-randomly, and likewise need
not be described explicitly to the decoder beyond synchronizing a seed.



C. LDHQ in decoder

We only describe the quantizer component of Section III-B.
Analogous to the hash constraint function of coding, c(ql) ,
{xl = Hq

l}(ql), define the quantizer constraint function,

g(sn, ql) ,
�
q

l
= Quantizel(s

n
;U ,L) (sn, ql)

=

lY

b=1

{qb = Quantize

1

(sAb ;ub)} (sAb , qb)

=

lY

b=1

gb(sAb , qb) (10)

Together with the data model psn(s
n
), the entire decoder

attempts to marginalize

u(sn, ql) , c(ql)g(sn, ql)psn(s
n
) (11)

for maximization over each si.
To obtain the messages for BP, notice the quantizer com-

ponent sends and receives external messages on the ports
of both sets of variable nodes (S and Q) (Fig. 3(b)). Let⇥
M i ⇤

(si) and
⇥
M i!⇤

(si) denote respectively the input and
output external messages on variable si. Let

⇥
M b ⇤

(qb) and⇥
M b!⇤

(qb) denote respectively the input and output external
messages on variable qb. Denote by ⌫i!b

(si) a message
passed from si to gb, and by ⌫i b

(si) one passed from gb
to si. Then, the local message updates of the LDHQ quantizer
component are:3

S node output: ⌫i!b ( ⌫i ⇠b
⇥
M i ⇤

S external message output:
⇥
M i!⇤ ( ⌫i ⇤

Q node ouptut: ⌫i b ( gi⇠i,b⌫
⇠i!b

⇥
M b ⇤

Q external message output:
⇥
M b!⇤ ( gb⇤⌫

⇤!b

Interestingly, in LDHQ decoding, there is no explicit choice
map �. It emerges from the decoding process. In other words,
the ŝn that decoding converges to for a given q̂l is not
pre-determined, though it will of course satisfy quantizer
constraint.

D. Results

Although we have sought no theoretical guarantee that
LDHQ performs well, (partly because performance is a func-
tion of a tradeoff with degree and complexity of the graph L),
we can nevertheless demonstrate that the very important linear
processing bound of Ancheta [15] can be breached at low
complexity, even within the context of a separation design. We
compress s

n ⇠ Bern(p), p = 1/2, with Hamming distortion
dn(s

n, ŝn) , (1/n)
Pn

i=1

{si 6= ŝi}. The rate-distortion
function for this source is, for 0  �  min{p, 1� p},

R(�; s) = h(p)� h(�) (12)

3⌫i ⇠b means the product of ⌫i x(s
i

) for all g
x

except g
b

in the
neighborhood of s

i

in L; ⌫i ⇤ is the same but does not except g
b

. ⌫⇠i!b

means the product of ⌫x!b(x) for all s
x

in the neighborhood of g
b

except
s
i

; ⌫⇤!b is the same but does not except g
b

. gi⇠i,b

⌫⇠i!b means summing
out all variables except s

i

in g
b

(s
Ab

, q
b

)⌫⇠i!b(s
Ab\si ); gb⇤⌫

⇤!b means
summing out all variables in g

b

(s
Ab

, q
b

)⌫⇤!b(s
Ab

) except q
b

.
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Figure 4: Compressing Bern( 1
2

) under Hamming distortion
with LDHQ. n = 1000, 4% doping bits included in reported
rate.

The linear processing bound for p = 1/2 is, for 0  �  p,

Rlinear
(�) = 1� 2� (13)

Fig. 4 shows a few trials where we borrow the decoding
graph of a regular LDPC code as L, and set a constant degree
on Q of only 3. LDHQ-prot shows the coding rates and
LDHQ-thresh shows the threshold rates of BP decoding
[16]. We see that, particularly at lower rates, decoding suc-
ceeds with demonstrably better performance than the linear
processing bound.

The result suggests that forms of low-complexity, semantics-
aware hashing may provide the desired performance in lossy
compression problems to support a separation architecture.

V. COST OF SEPARATION

Like Wyner-Ziv coding, and unlike Slepian-Wolf coding,
there is a performance cost to MQS at low rates. We report a
result on how much this cost must be.

The main result is on the scenario of using an arbitrary
codebook Qn for quantization, and entropy coding on its
output ŝn(ql), under the specific condition that we know
the original source distribution psn at the decoder — not a
condition usually considered. To do this, we explicitly view
the quantization codebook as a stochastic collection Qn ,
{(ˆsn)

1

, (ˆsn)
2

, ..., (ˆsn)|Qn|} of reproduction words drawn from
a design distribution on the words of Sn.

Definition 1. Let P be the source law, i.e. psn . Let W be an
arbitrary stochastic encoding law, i.e. p

ˆsn|sn . Let PW be the
joint distribution of the source-reproduction pair under source
law P and encoding law W , i.e. psnˆsn . Let Y be the output
distribution under source law P and encoding law W , which
is to say, p

ˆsn =

´
sn psn(s

n
)p

ˆsn|sn(ŝ
n|sn) or Y =

´
P PW for

short. (Y is the effective codebook distribution; it can differ



from the design distribution.) Let Q be an arbitrary codebook
design distribution. Let WQ , arg infW D(PW ||P ⇥ Q)

denote the optimal encoding law when coding a P -source
with an arbitrary codebook of design distribution Q. Let
YQ =

´
P PWQ denote the associated effective codebook

distribution at the output.

The performance of lossy compression as fundamentally a
codebook mismatch problem is extensively surveyed in [17]
by large deviation methods and we modify Theorem 1 to take
into account the fact that we know P (and of course Q and
therefore YQ) after quantization.

Theorem 2. The optimal rate for rate-distortion coding a P -
source, using a quantizer with codebook design distribution Q
at the encoder, with knowledge of P and Q at the decoder, is

RQ,EC
(�) = inf

W
D(PW ||P ⇥ YQ)

= inf

W
[D(PW ||P ⇥Q)]�D(YQ||Q)

, RQ
(�)�D(YQ||Q)

with all optimizations subject to Edn(sn,ˆsn)  �.

RQ
(�) is the rate required to use codebook Q on P . The

term D(YQ||Q) is the rate recovered by entropy coding the
quantizer output. Furthermore, the encoder can apply model-
free coding (lossless compression) at rate RQ,EC

(�), knowing
the decoder, with P and Q at hand, will “compute” and
apply the model for YQ, the utilized, effective distribution
of the codebook Qn, rather than Q itself. Note that this
“computation” need not be an explicit one, since the distri-
bution emerges on the graphical nodes s

n from the inferential
decoder applying the data model G and the quantizer design
L (encoding law and design distribution).

A. Example

Fig. 5 shows the various rate functions computed for the
i.i.d. source Bern(p) (codebooks are also i.i.d., thus all
quantities refer now to single-letter marginals) with Hamming
distortion. The optimal reproduction distribution is

Q⇤ = Bern

✓
p��
1� 2�

◆
(14)

We are particularly interested in the uniform (or other entropy
maximizing) distribution for the quantizer, because a model-
free quantizer almost certainly has to use it. We see RQ,EC

(�)

converging to R(�; s) at high rate and also perform well at
intermediate rates. At lower rates, time-sharing in an architec-
turally compatible way with the R(�; s) zero-rate extremum
(i.e. not coding some symbols) gives performance much closer
to R(�; s).
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