
Lloyd Clustering of Gauss Mixture Models for

Image Compression and Classification 1

Anuradha Aiyer

Analogic Corporation, 8 Centennial Drive, Peabody, MA 01960

Kyungsuk (Peter) Pyun

Hewlett-Packard Company, 11311 Chinden Blvd. ms 276, Boise, ID 83714

Ying-zong Huang

Department of Electrical Engineering and Computer Science, MIT, Cambridge,
MA

Deirdre B. Obrien Robert M. Gray ∗

Information Systems Laboratory, Department of Electrical Engineering, 350 Serra
Mall, Stanford, CA 94305

Abstract

Gauss mixtures have gained popularity in statistics and statistical signal processing
applications for a variety of reasons, including their ability to well approximate a
large class of interesting densities and the availability of algorithms such as the EM
algorithm for constructing the models based on observed data. We here consider a
different motivation and a framework based on the information theoretic view of
Gaussian sources as a “worst case” for robust signal compression. Results in high
rate quantization theory suggest distortion measures suitable for Lloyd clustering
of Gaussian components based on a training set of data. The approach provides a
Gauss mixture model and an associated Gauss mixture vector quantizer which is
locally robust. We describe the quantizer mismatch distortion and its relation to
other distortion measures including the minimum discrimination information and
log-likehood distortions. The resulting Lloyd clustering algorithm is demonstrated
by example to image vector quantization, texture classification, and North Atlantic
pipeline image classification.

Key words: Clustering, compression, quantization, Gauss mixture, statistical
classification, segmentation

Preprint submitted to Elsevier Science 21 August 2004

1 Introduction

Gauss mixtures have played an important role in modeling random processes
for purposes of both theory and design. [49,18,17,33,71,37,45,20,14]. Although
newly popular, they have been used in signal processing for many decades. For
example, linear predictive coded speech (LPC) can be viewed as fitting Gauss
mixture models to speech when the autoregressive (AR) models fit to seg-
ments of speech are excited by Gaussian residual processes. In this case the
synthesized speech becomes a composite Gaussian process and hence locally
a Gauss mixture. The most popular means of fitting a Gauss mixture model
to data is the EM algorithm, but Lloyd clustering techniques with suitable
distortion measures between observed data and resulting model can be used,
as was the Itakura-Saito distortion [38] used for fitting AR models to sampled
speech waveforms [27]. The Itakura-Saito distortion is an example of a dis-
tortion measure based on model fitting techniques of Kullback using relative
entropies (Kullback-Leibler numbers, cross entropies) [41] and our approach
can be viewed as a two dimensional extension of the speech techniques. The
Lloyd algorithm [47], like the later k-means algorithm [48], originally consid-
ered only squared error distortion, but was subsequently generalized (see, e.g.,
[29] for a history). Potential advantages of Lloyd clustering techniques over the
traditional EM algorithm are the use of minimum distortion rules for model
selection and the formulas describing centroids with respect to the distortion
measures, formulas which when combined with quantization theory provide
quantitative relations between minimum discrimination information distor-
tion measures and the performance of optimized robust compression systems.
Furthermore, Lloyd clustering does not require the assumption that the ob-
served process is in fact a Gaussian mixture, it instead takes the view that an
observed training set produced by an arbitrary probability density is to be fit
by a Gauss mixture model by minimizing an average distortion between model
and data. One of the key properties of Gaussian models is their role as a “worst
case” for designing robust compression/source coding problems, a characteri-
zation originally developed in an information theory context by Sakrison [60]
and subsequently extended to Gauss mixture models using high rate quan-
tization theory [30]. This extension suggests a natural distortion measure
for measuring how well Gauss and Gauss mixture models fit observed data.

∗ Corresponding author.
Email addresses: pyun@hp.com (Kyungsuk (Peter) Pyun),

rmgray@stanford.edu (Robert M. Gray).
1 This work was supported by the National Science Foundation under NSF Grants
MIP-9706284-001 and CCR-0073050 and by a gifts from the Hewlett Packard Cor-
poration and Norsk Electro Optikk. Portions of this work were presented at the
IEEE 2001 International Conference on Image Processing, 2001 International Con-
ference on Acoustics, Speech, 2002 Signal Processing, Multimedia and Expo, 2004
IEEE Data Compression Conference.

2

The distortion measure is a variation on Kullback-Leibler distortion measures
such as the Itakura-Saito, minimum discrimination information distortion, the
log-likelihood distortion, and local Mahalonobis distortion measures. Its mo-
tivation derives from a formula for the performance mismatch resulting when
a quantizer designed for one source (such as Gaussian or Gauss mixture) is
applied to another (perhaps real data to which a Gaussian or Gauss mixture
model has been fit). We here describe Lloyd clustering algorithms based on
this distortion measure for the design of Gauss mixture models and develop
the properties of the resulting models. We provide examples to demonstrate
the algorithms and their potential for both compression and statistical classi-
fication of images.

2 Quantization

Image compression or coding is the mapping of an analog or high rate digital
image into a relatively low rate representation for efficient storage or transmis-
sion. Image compression is also useful for reducing the complexity of other sig-
nal processing techniques such as classification and segmentation based on the
image. We model a compression system as a Shannon source code subject to
a fidelity criterion (or vector quantizer) [62,13,24,29]: The information source
consists of a random process of vectors {X1, X2, . . . } in k-dimensional space,
ℜk. The vectors may represent, for example, blocks or lines of pixels in a single
image or successive image frames in video. We assume that the source has a
stationary distribution described by a probability density function (pdf) f for
a generic random vector X. The vector X is encoded into a binary code vector
α(X) with length ℓ(α(X)). Without loss of generality this can be considered
as a mapping of X into an index i = α(X) which is losslessly encoded using a
uniquely decodable code with resulting codeword length ℓ(i). The decoder β
converts the index into a source reproduction X̂. The cost or lack of quality
of the reproduction is measured by a distortion d(X, X̂) = d(X, β(α(X)) and
the cost or rate of transmission or storage is measured by the length ℓ(α(X)).
Requiring a uniquely decodable lossless code for the index means that the
lengths of the binary vectors must satisfy the Kraft inequality, i.e., if the bi-
nary codeword corresponding to index i has length ℓ(i), then if the lengths
are measured in nats

∑

i

e−ℓ(i) ≤ 1 . (1)

A length function ℓ satisfying (1) is said to be admissible.

Performance is measured by average distortion, E [d(X, β(α(X)))] and av-
erage rate E [ℓ(α(X))] . The optimal performance is found by constraining
either rate or distortion and minimizing the other performance measure over
all quantizers, or by minimizing a Lagrangian combination of the two. We

3

emphasize the Lagrangian approach, as it has led to the most general theory
and design algorithms based on optimally trading off average distortion and
rate.[12,24,29]

A quantizer Q is characterized by the triple {α, β, ℓ}. The expected Lagrangian
distortion for a code Q is ρ(λ, f, Q) = Ef (d(X, β(α(X))) + λℓ(α(X))) and the
optimal performance for a fixed λ is given by ρ(f, λ) = infQ ρ(λ, f, Q), where
the infimum is over all quantizers Q with admissible length functions.

There are three necessary conditions for a code with components α, β and ℓ to
be optimal in the sense of yielding the best possible rate-distortion tradeoff for
a given value of λ [47,46,12,24,29]. These three conditions provide an iterative
descent algorithm to construct an optimal quantizer — the generalized Lloyd
clustering algorithm. As our algorithm is an application of these ideas to a
nonEuclidean distortion measure, we recall these properties in their general
form: The optimal α for a given β, ℓ is α(x) = arg mini (d(x, β(i)) + λℓ(i)),
the optimal β for a given α, ℓ is β(x) = arg miny E[d(X, y)|α(X) = i], and the
optimal ℓ for a given α, β is ℓ(i) = − ln Pr(α(X) = i). Iterative application
of these three optimality properties to an initial code constitutes the general-
ized Lloyd design algorithm. Typically the Lloyd algorithm is run on a set of
training data so that the expectations become sample averages.

The distortion measure between observed data and probability density func-
tions or models that will be used here is based on high rate quantization
theory, the theory describing the asymptotically optimal performance in the
high rate or small λ case [70,23,29,31,30]. High rate theory shows that under
suitable techincal assumptions the asymptotic performance using the squared
error distortion is characterised by

lim
λ→0

(

inf
Q

(

Ef [d(X, β(α(X)))]

λ
+ Efℓ(α(X))

)

+
k

2
ln λ

)

= h(f) + θk (2)

where the infimum is over all quantizers with admissible length functions, θk =
infλ>0 (ρ(u1, λ)/λ + k/2 ln λ) , and u1 is the uniform pdf on the k-dimensional
unit cube. Intuitively this means that given a small λ there exists a quantizer
which is approximately optimal for this λ: ρλ(f, Q) ≈ λθk+λh(f)−(k/2)λ ln λ.
Only the squared error is considered in the high rate results, but these formulas
will prove useful for quantizing models or probability density functions with
nonEuclidean distortion measures since we will measure the distance between
models by how similar their quantized outputs are.

Since the high rate performance depends on the source pdf f only through its
differential entropy, this implies that if one is given any constraints on the pdf,
the worst case source in the sense of having the worst high rate compression
performance will be the source which has the largest differential entropy. Thus,
for example, if all that is known about a pdf is its µ = EfX and covariance

4

K = Ef [(X − µ)(X − µ)t], then the pdf with the largest differential entropy
is well known to be the Gaussian pdf

f(x) = N (x, µ, K) =
1

(2π)
k
2 |K|

1
2

exp
(

−
1

2
(x − µ)tK−1(x − µ)

)

with differential entropy [13] h(f) = (1/2) ln(2πe)k|K|, where |K| is the de-
terminant of K.

Not only is the Gaussian the worst case, it also turns out that a code designed
for a Gaussian source with a given µ and K will provide the approximately
the same performance on the Gaussian source and on any other source with
the same mean and covariance. This behavior was defined as robustness of a
code in the Shannon rate-distortion sense by Sakrison [60] and was extended
to the high rate quantization case in [30].

Suppose that for a fixed small λ an optimal code Q∗
g is designed assuming

that the source pdf is g so that it has performance ρ(λ, g, Q∗
g)/λ

∼= θk +h(g)−
(k/2) lnλ. Suppose that the actual source pdf is f and not g, that is, there
is a mismatch between the pdf used to design the code and the pdf to which
the code is applied. Two natural questions arise in this case: What is the
resulting performance of the code Q∗

g on f , ρ(λ, f, Q∗
g) and how far is this

performance from the optimal performance possible for f , ρ(λ, f)? It can be
shown either from heuristic arguments based on Gersho’s conjecture [1] or by
rigorous application of high rate theory [30] that the answers to these questions
are given by

ρ(λ, f, Q∗
g)

λ
−

ρ(λ, g, Q∗
g)

λ
∼= h(f) − h(g) + I(f ||g)

ρ(λ, f, Q∗
g)

λ
−

ρ(λ, f)

λ
∼= I(f ||g),

where I(f ||g) =
∫

dxf(x) ln f(x)/g(x) is the relative entropy or Kullback-
Leibler divergence between pdfs f and g.

If f and g are known to have means µf and µg and covariances Kf and
Kg, respectively, and g alone is assumed to be Gaussian (f can be arbitrary
except for the assumed moments), then h(f) − h(g) + I(f ||g) = −(k/2) +
(1/2) TraceK−1

g Kf − (µf − µg)
tK−1

g (µf − µg). Thus if we choose equal means
and covariances, µg = µf = µ and Kf = Kg = K, then h(f) − h(g) +
I(f ||g) = 0 and hence indeed the performance of the code designed for g
asymptotically equals that when the code is applied to f and the performance
loss of the mismatched code for f to the optimal code for f is I(f ||g) =
(1/2) ln(2π)k|Kf |−h(f), the difference between the actual differential entropy
of f and its maximum value.

5

A single Gaussian source provides both a worst case and a robust design for
a source whose second order properties are known. Code design based on a
single Gaussian, however, can be overly conservative. Speech coding tradition
suggests that instead of designing a code based on a single Gaussian model,
a collection of Gaussian models can be used by fitting a distinct Gaussian
model to each segment of speech (an autoregressive model matching the local
covariance behavior) and designing a separate code for each model. For each
input vector a decision is first made about which code (or model) is best, and
then that code is used on the current input vector. Current codebook excited
linear prediction (CELP) techniques can be viewed as having this structure.

Again let f be the “true” pdf on Euclidean space ℜk. Consider a finite partition
of this space, S = {Sm; m ∈ J }, where J = {1, . . . , M}. For the moment the
partition is assumed to be arbitrary except for the requirement that the cells
Sm have nonzero probability, Pf (Sm) > 0 for all m. Given this partition, we
can consider f to be a mixture source of the form f(x) =

∑

m pmfm(x), where
the fm are the conditional pdfs fm(x) = f(x)/pm for x ∈ Sm and 0 otherwise,
where pm = Pf(Sm).

We consider a form of classified vector quantizer [57] or composite code: we
design a separate code, say Qm, for each fm, and then apply a two-step coding
procedure. The first step is to estimate which component is in effect, which
here is simply a question of determining which partition cell Sm contains the
input vector. The second step is to then apply the corresponding code, Qm.
The idea is that the worst-case/robustness results can be applied to each of
the component pdfs fm, allowing for a locally worst case and robust design.

Assume that we have a collection of model pdf’s {gm} on ℜk. Each gm can
be thought of as a design model for fm, but it is important to note that gm

need not have the same support as fm, and we choose it to be Gaussian for
robustness of the resulting code. Let M denote the class of all nonsingular
Gaussian pdfs of dimension k and hence gm ∈ M for all m. We assume a
fixed (and small) λ and that for each m we have a code Qm = (αm, βm, ℓm)
optimized for λ and gm, that is, ρ(λ, gm, Qm) ∼= ρ(λ, gm).

The overall code Q operates as follows: If x ∈ Sm, then αm(x) = i is used
to provide an index indicating which codeword βm(i) is to be used for the
reproduction and that its cost (length) is ℓm(i). For the decoder to know which
code to use, however, we assume another length function L(m) indicating how
many nats are required to specify m to the decoder, where L must also satisfy
the Kraft inequality. To summarize, the overall code Q = (α, β, ℓ) is defined
by α(x) = (m, αm(x)) if x ∈ Sm, β(m, i) = βm(i), ℓ(m, i) = L(m)+ ℓm(i). The
overall performance of the composite quantizer on the full pdf f is given by

6

[30]

ρ(f, λ, Q)

λ
−h(f) =

∑

m

pm

(

Efm
d(X, β(α(X)))

λ
+ Efm

ℓ(α(X)) − h(fm)

)

−H(Z)

where Z has distribution Pr(Z = m) = Pr(X ∈ Sm) = pm.

By construction, the length function ℓ(m, i) = L(m) + ℓm(i) and with the
optimal choice of L(m) = − ln pm, the average code length of the composite
quantizer is EL(Z) +

∑

m pmEfℓm(αm(X)) = H(Z) +
∑

m pmEfℓm(αm(X)).
With this choice we have for the composite quantizer Q that

ρ(f, λ, Q)

λ
− h(f) =

∑

m

pm

(

ρ(fm, λ, Qm)

λ
− h(fm)

)

.

Since each quantizer Qm is optimized for a Gaussian model gm and applied to
the pdf fm, we have from the single Gaussian case that the quantizer mismatch
will be approximately

ρ(λ, fm, Qm)

λ
−

ρ(λ, gm, Qm)

λ
∼= h(fm) − h(gm) + I(fm||gm)

=−
k

2
+

1

2
Trace K−1

gm
Kfm

+ (µfm
− µgm

)tK−1
gm

(µfm
− µgm

)

which will be zero if the Gaussian moments are chosen to match those of fm.

Continuing to assume matched moments, application of the mismatch theorem
yields the high rate approximation

ρ(f, λ, Q)

λ
−

ρ(f, λ)

λ
∼=
∑

m

pmI(fm||gm) . (3)

Unlike the single component Gaussian, we have the possibility of minimizing
this mismatch by judicious choice of the partition S, which, as we shall see,
can be accomplished using the Lloyd clustering algorithm

3 Distortion Measures for Clustering Gauss Mixtures

The Quantizer Mismatch Distortion

We seek a collection G = {gm} of pdf’s from an allowed collection of Gaussian
pdf’s and a partition S = {Sm} of ℜk which minimizes the overall mismatch

7

defined by If = infS,G If (S,G), where If(S,G) =
∑

m Pf(Sm)I(fm||gm). This
minimization can be solved by clustering and, in fact, posed as a quantization
problem with an encoder a : ℜk → J described by the partition S = {Sm} by
a(x) = m if x ∈ Sm, m ∈ J , and a decoder b : J → M defined by b(m) = gm.

Given an encoder index m corresponding to encoder cell Sm, the best possible
gm in terms of minimizing the mismatch is the Gaussian solution to gm =
arg ming∈M I(fm||g), which has been shown to be the Gaussian source with the
same mean and covariance as fm. With this decoder the minimum mismatch
problem becomes

If = inf
S

∑

m

Pf(Sm) min
g∈M

I(fm||g).

To describe the encoder and performance requires a distortion measure, and
this we choose in a way that minimizing average distortion is equivalent to
finding the minimum mismatch. Consider the distortion defined by dI(x, m) =
ln(f(x)/gm(x)) + L(m), where L is an admissible length function. dI is not
a distortion in the strict sense since it need not be nonnegative, but its av-
erage with respect to f is nonnegative from the divergence inequality and it
meets all of the requirements of the Lloyd algorithm. The optimal encoder
is a minimum distortion encoder and hence for a given decoder codebook G
a(x) = arg minm dI(x, m) = arg minm (L(m) − ln gm(x)) . The corresponding
encoder partition S will then yield average distortion

∫

dxf(x)dI(x, a(x)) =
∑

m

pm

(

L(m) +
∫

Sm

dxfm(x) ln
fm(x)pm

gm(x)

)

where as before pm = Pf(Sm) and fm(x) = f(x)/pm for x ∈ Sm. Thus

∫

dxf(x)dI(x, a(x)) =
∑

m

pmI(fm||gm) +
∑

m

pm ln
pm

e−L(m)

≥
∑

m

pmI(fm||gm)

with equality if and only if we choose the optimal length function L(m) =
− ln pm. Thus if we choose an optimal decoder and length function for a par-
tition, the average distortion according to dI is exactly the mismatch which

we are trying to minimize. Thus iterating the Lloyd optimality properties of
optimizing encoder, decoder, and length function can only decrease average
distortion and hence also the mismatch.

When using individual Gaussian models with optimal codebooks and length
functions, the distortion takes on the form

8

dI(x, m) = ln f(x) − ln pm +
1

2
ln
(

(2π)k|Km|
)

+
1

2
(x − µm)tK−1

m (x − µm)

where µm and Km are the mean and covariance of the Gaussian pdf gm.

The ln f(x) term has no effect on the encoder a, that is, on the minimum
distortion match of a model from the codebook to an input vector. Likewise
the additive constant terms have no effect on the encoder. Distortion measures
are equivalent for quantization if they yield the same encoder. Thus we define
the quantizer mismatch or QM distortion by

dQM(x, m) = ln
1

gm(x)
− ln pm

=
1

2
ln |Km| +

1

2
(x − µm)tK−1

m (x − µm) − ln pm. (4)

This is no longer a ‘distortion measure’ in the strict sense of rate-distortion
theory because in is not a nonnegative function, but it can be made nonnega-
tive and it will yield the same encoder and decoder when used in a quantization
or source coding application. The first two terms of (4) involve only the shape
of the model pdf. Distortion measures equivalent to the first term have been
used in clustering with names like “maximum likelihood” or “log likelihood”
distortion since minimizing this distortion over m for a given x is equivalent to
choosing the maximum likelihood estimate for m assuming the vector was ac-
tually produced by one of the models gm [28,1,32]. If the pdf f is retained, this
can also be interpreted as a log likelihood ratio distortion measure. Further-
more, with the optimal length function providing the ln pm term, minimizing
the distortion is equivalent to a maximum a posteriori selection of a Gauss
model from a collection of Gauss models gm with a probability mass function
pm, i.e., the MAP selection of which Gauss component of a Gauss mixture is
in effect if the unknown source is in fact a Gauss mixture source.

We argue that this distortion measure provides a meaningful measure of the
distortion between an input vector x and a “model” {gm, pm} consisting of a
pdf together with a probability of the pdf being in effect. The intuition is that
if one has a collection of models together with a prior (and hence a mixture
model) which yields a small average distortion with respect to this distortion
measure, then a composite quantizer designed using the mixture components
will provide a good code for the true underlying source, where “good” here
has the double meaning that the code will be robust and have performance as
close as possible to the optimal performance for the unknown pdf f .

We shall see that the Lloyd algorithm for minimizing mismatch produces a
collection of Gaussian models gm together with a probability mass function,
pm. A collection of pdf’s together with a pmf can be viewed as a mixture and
hence the algorithm can be viewed as a means of fitting mixtures of specified

9

families of densities to an arbitrary pdf. Thus the preceding development pro-
vides a Lloyd clustering algorithm for the design of Gauss mixture models, an
algorithm which can be viewed as quantizing the space of Gaussian models.

Autoregressive Models

If further structure is imposed on the Gauss components of the mixture,
then the QM distortion can be approximated in a way that can reduce the
computational complexity of the encoder. This leads to an example of the
closely related minimum discrimination information (MDI) distortion implicit
in Kullback [41] which in speech coding applications yields the highly success-
ful Itakura-Saito distortion [27]. Unfortunately, dealing with images or ran-
dom fields means more complicated analysis than the corresponding results
for speech. We constrain our models to be shift-invariant (spatially stationary)
recursible autoregressive (AR) models as developed by Lev-Ari et al. [44]. (See
in particular Sections II and IV of [44]). This is a class of two-dimensional AR
models with properties very similar to their one-dimensional counterparts.

Consider the random field representation of a random vector X = {Xn; n ∈
I = Z2

J}, ZJ = 0, 1, . . . , J − 1; that is, the random variables Xn are indexed
by a two-dimensional integer-valued vector n. The random vector dimension
is k = J2. The mean of X is µ = EX and the covariance K = E[(X −
µ)(X − µ)t], where µ is no longer a one-dimensional vector and K no longer
a two-dimensional matrix because of the vector indexing, both can be viewed
as (mixed) tensors. Both can be put into vector form by imposing an ordering
φ on the index set I. In fact, the tensors can be vectorized in many ways.
Thus tensor equations can be transformed into vector/matrix equations. We
will usually not differentiate between the two notations unless necessary. Note
that since all distinct orderings are simply permutations, some operations (like
determinants) will not depend on the ordering chosen.

An AR model is specified by a pair A = {at,s; t ∈ I, s ∈ I}, where at,t = 1 for
t ∈ I, Σ = diag(σ2

t ; t ∈ I}. The support set of the model is D = {(t, s) : t ∈
I, s ∈ I, at,s 6= 0.}. We consider only finite order models, that is, the support
set is finite. The corresponding AR model takes the form

Xn = Wn −
∑

s:(n,s)∈D,s 6=n

an,sXs; n ∈ I, (5)

where the Wn are independent, identically distributed random variables with
mean µW and variance σ2

W . An AR model is shift-invariant or stationary if
at,s = at−s for all (t, s) ∈ D. In particular following (22) of [44] we assume D =
{(t, s) : t ∈ I, s ∈ I, t − s ∈ ∆}, where ∆ is a fixed set of nonnegative integer
pairs. (This corresponds to a causal model. Generalizations are considered in

10

[44].)

An AR model is recursible if there is a permutation of the index set I such
that the resulting matrix A corresponding to the tensor A is lower triangular.

Lev-Ari et al. [44] derive a variety of useful properties of shift-invariant re-
cursible AR models for the case where I is the set of all integers, in which
case the AR process has a covariance function that is shift invariant. We will
be interested in the finite case, but the following properties will still be helpful.

(1)
K(n, n) = σ2

n = σ2; n ∈ I (6)

(2) The covariance and regression coefficients A are related by

∑

n∈∆

anK(l − n) = σ2δl,0, l ∈ ∆. (7)

A key point is that given a shift invariant covariance K, the corresponding
AR coefficients can be found by solving the above linear equations, which are
just the multidimensional version of the Yule-Walker or normal equations as
noted in [44] and can also be considered as the standard linear prediction or
maximum entropy formulas. Furthermore, not all of the covariance coefficients
are needed, only those values K(t, s) in the “band” B = {(t, s) : t − s ∈ ∆}.

These results yield the structure of the inverse covariance K−1, the operator
satisfying

∑

i

K(t, i)K−1(i, s) = δt,s. (8)

In particular, direct substitution into (7) and the fact that an = 0 for n 6∈ ∆
verifies that the inverse covariance is given by the Toeplitz operator

K−1(t, s) =

1
σ2

∑

l∈∆ alal−(t,s) (t, s) : t − s ∈ ∆

0 otherwise
. (9)

In particular, the inverse covariance K−1 has nonzero entries only in this same
band; that is, K−1(t, s) = 0 unless t − s ∈ ∆ [44].

Lastly, the mean is easily found to be a constant:

µ = µW

∑

t∈·

at. (10)

We now make a stronger assumption then done in [44]: we assume that the
order of the autoregressive model is a small number M in the sense that
maximum integer component of any vector in ∆ is M << k, the vector
or random field dimension. In speech modeling, M is typically 10. In our

11

more complicated image application we will take M = 1 – a first order two-
dimensional recursible AR model. In particular, in our simple case we will take
∆ = {(0, 0), (0, 1), (1, 0), (1, 1)}. With an eye towards modeling finite images,
we also now consider I to be {0, 1, 2, . . . , K}. Now we cannot have both a
shift-invariant AR model and a shift-invariant covariance because of the edge
effects, but K−1(t, s) will depend only on the vector difference t− s except for
the “edges” where t or s has components between 0 and M − 1. In particular,
for all (t, s) ∈∈ ∆ ∈ D except where at least one of the components of t or s is
less than the model order, (9) will hold. In particular, the operator K−1(t, s)
is not Toeplitz, but it is approximately Toeplitz (asymptotically Toeplitz as
J → ∞).

Similarly, in the finite extent case, the mean is a constant vector except near
the edge, that is, when one of the components of the index is smaller than M .

Combining the above ideas yields the the approximation

(x − µ)tK−1(x − µ) =
∑

(i,j)∈D

(x(i) − µ)(x(j) − µ)K−1(i, j)

∼=
∑

n∈∆

K−1(n) ×
∑

i,j:i−j=n

(x(i) − µ)(x(j) − µ)).

The rightmost term can be recognized as a sample average estimate of the
covariance of the underlying shift invariant random field Xi about a constant
vector µ (possibly not the process mean) for a vector lag n. If we define an
estimate

K̂x,m(n) =
1

N(n)

∑

i,j:i−j=n

(xi − m)(xj − m); n ∈ I2 (11)

where N(n) = #{i, j : i − j = n}, then the approximation becomes

(x − µ)tK−1(x − µ)=
∑

n

N(n)K−1(n)K̂x,µ(n)

=
∑

i,j

K−1(i, j)K̂x,µ(i, j),

so that the quantizer mismatch distortion between an input x and a model
(µm, Km, pm) can be approximated as

dQM(x, m) =
1

2
ln |Km| +

1

2
(x − µm)tK−1

m (x − µm) − ln pm

∼=
1

2
ln |Km| − ln pm +

1

2

∑

i,j∈D

K−1
m (i, j)K̂x,µ(i, j). (12)

It is important to note that only the estimates K̂x,m(n) for n ∈ ∆ are required.

12

The Minimum Discrimination Information Distortion

The final form of the approximation (eq:mdi) is almost the same as the min-
imum discrimination information distortion between an observed x and the
model (µm, Km, pm), which is given by [41,27,32]

dMDI(x, (µm, Km))=
1

2
[log

|Kl|

|K̂x|
+
∑

i,j∈I

K−1
l (i, j)K̂x,µl

(i, j) − k],

where K̂x = K̂x,µ̂, the sample covariance about the sample mean µ̂ = (1/k)
∑

i∈I xi,
so that

dQM(x, (ml, Kl))∼= ln | Kl | +
∑

i,j

K−1
l (i, j)K̂x,ml

(i, j)

= dMDI(x, (ml, Kl)) + ln |K̂x| + k − log pm

The log determinant term depends only on the input x, hence it makes no dif-
ference to the encoder. Similarly, the constant term has no effect. The log pm

term can be viewed as a Lagrangian distortion term with multiplier equal to 1,
or it can be eliminated by assigning the models equal prior probabilities, effec-
tively using a fixed-rate model codebook. Thus the MDI distortion and the QM
distortion can be viewed as approximately equivalent distortion measures. The
MDI has a different structure and hence can yield simpler implementations,
as is the case in speech coding. We consider both forms in our simulations. We
also observe that other forms of covariance structure can be imposed on the
allowed Gaussian components, which may be useful in some problems. For ex-
amples of such structured covariances, see,e.g., [44], who treat the maximum
entropy formulation which is a special case of the minimum discrimination
information formulation.

4 Centroids

To design a codebook using the Lloyd clustering algorithms requires the com-
putation of the centroids with respect to a fidelity criterion. For the QM dis-
tortion, these were derived in [32,30]. For the MDI distortion the derivation is
a natural extension of the corresponding result for one-dimensional speech [27]
and can be found in [32,26]. The results are summarized here for convenience.
Here the expectation is with respect to the empirical distribution of a training
set of data, i.e., the conditional expectations are conditional sample averages.

13

The goal is to find ml and Kl to minimize the conditional average distortion

E[dQM(X, gl) | α(X) = l] = E[ln |Kl| + (X − ml)
tK−1

l (X − ml)|α(X) = l]

The optimal mean regardless of the covariance is given by ml = E[X | α(X) =
l] since this choice minimizes the quadratic term in the mean as 0 (the centroid
with respect to a weighted quadratic measure is the mean).

Define the average K l = E[(X − ml)(X − ml)
t]. Then

E[dQM(X, gl) | α(X) = l] = [ln
|Kl|

|Kl|
+ Tr(K−1

l K l) − k] + k + ln |K l|

≥ k + ln |K l|

with equality if Kl = K l = E[(X−ml)(X−ml)
t | α(X) = l], so that centroids

are computed by averaging.

For the MDI distortion we must minimize the conditional expectation

E[dMDI(X, gl) | α(X) = l] =
1

2
E[ln

|Kl|

|K̂X |
+ Tr(K̂XK−1

l)

+(m̂X − ml)
tK−1

l (m̂X − ml) − k | α(X) = l]

where m̂X and K̂X are the mean and the covariance estimates for observation
X.

The mean centroids are given by ml = E[m̂X | α(X) = l] regardless of Kl as
before. With this choice of ml we need Kl to minimize

E[ln
|Kl|

|K̂X |
+ Trace(K̂XK−1

l) − k | α(X) = l]

= ln
|Kl|

|K l|
+ Trace(K lK

−1
l) − k + E[ln

|Kl|

|K̂X |
| α(X) = l]

≥E[ln
|K l|

|K̂X |
| α(X) = l]

with equality if Kl = K l (since the first three terms are just the Kullback-
Leibler distortion between two Gaussian distributions with the given covari-
ances and 0 means). Since the end goal is an AR model, this computation
is simpler than it seems. All that is needed is the conditional average of the
covariance estimates for the multidimensional “lags” n ∈ ∆, in our case of a
first order model this is just four numbers. These numbers are then used in
the normal equations to derived the centroid AR coefficients.

14

In theory the centroid step can result in a singular covariance matrix, which
means the resulting Gaussian component will have a singular density. This
can be avoided by means of the standard statistical trick of regularization,
e.g., forming a final update Km = αKm + (1 − α)K for α ∈ (0, 1) and

K =
1

N − L

L
∑

l=1

∑

xj∈Sl

(xj − µl)(xj − µl)
t.

5 Gauss Mixture Design

There is extensive literature for designing Gauss mixture models, with the
EM algorithm based on maximum likelihood and its extensions [15,58,20]
being the most popular. Both the EM algorithm and the Lloyd clustering
approach proposed here operate on a training or learning set {x1, x2, . . . , xN}
and produce a finite Gauss mixture {gm, pm}. The Lloyd clustering design goal
is to find a Gauss mixture to minimize

1

N

N
∑

n=1

dQM(xi, a(xj)) =
1

N

N
∑

n=1

min
m

(− ln pm − ln gm(xi)) , (13)

where we focus on the QM distortion with the understanding that the MDI
distortion is also applicable with the obvious modifications. In contrast, the
EM algorithm seeks a minimum of

∏N
i=1

∑M
m=1 pmgm(xj), or, equivalently, a

minimum of
N
∑

i=1

ln

[

1
∑M

m=1 pmgm(xj)

]

.

The EM algorithm assumes that each training vector is in fact a sample from
the Gaussian mixture. The Lloyd algorithm assumes that each training vector
is a sample from one of a collection source components that is to be modeled
by an individual Gaussian component, but no claim is made to the effect that
the unknown source in fact is a Gauss mixture.

Lloyd Clustering Algorithm Initialization Begin with an initial codebook
of Gaussian models {g(0)

m ; m = 1, . . . , M} described by mean vectors {µ(0)
m }

and covariance matrices {K(0)
m }. This can be accomplished using ordinary MSE

Lloyd and then using the sample means and covariances for each index. Set
iteration number n = 1 and set D0 to the average distortion resulting from
the initial codebook. Pick a convergence threshold ǫ.

Minimum Distortion Encoder Encode each training vector xi into the
index i using the optimal encoder α(n) = arg minm dQM(xi, g

(n−1)
m), the quan-

tizer mismatch distortion of (4).

15

Centroid Decoder Update the models in the codebook. The mean µm of
the codeword with index m is the conditional expectation of all training vec-
tors which were mapped into m in the previous step. The covariance is then
the corresponding conditional average covariance with respect µm. Since the
averages are computed with respect to the sample distribution,

µm
(n) =

1

Nm

∑

i:α(i)(n)=m

xi

where Nm is the number of training vectors for which a(n)(i) = m. Similarly,

K(n)
m =

1

Nm

∑

i:α(n)(i)=m

(xi − µ(n)
m)(xi − µ(n)

m)t .

Optimal Length Function ℓ(m) = ln p(n)
m , where p(n)

m = Nm/N if Nm > 0.
If Nm = 0, remove the cell from the code and reduce M by 1. If a fixed rate
code is used, this step is skipped and the pm are assumed to be equally likely.

Test Compute the average distortion Dn with the new code. If (Dn−1 −
Dn)/Dn−1 < ǫ, quit. Otherwise go to the minimum distortion step and con-
tinue.

In practice the sample average mean, covariance, and counts for each cell are
computed on the fly as each training vector is encoded. In addition, the test
for the current iteration is actually computed during the minimum distortion
step of the next iteration.

To illustrate the operation of the Lloyd clustering algorithm, consider the fol-
lowing toy problem. Example: GMVQ design of GM for dataset. Assume that
the input process is a two-dimensional Gaussian mixture with two compo-

nents: m1 = (0, 0)t, K1 =

1 0

0 1

, p1 = 0.8

m2 = (−2, 2)t, K2 =

1 1

1 1.5

, p2 = 0.2. The process is depicted in Figure 5.

The training sequence is randomly generated from the Gauss mixture. Figure
5 depicts the training set and the initial code. Figure 5 depicts the Lloyd
generated Gauss mixture models from initial codebook to convergence, and
Figure 5 shows the QM distortion as a function of the iteration number.

EM Algorithm Let θ denote the complete parameter set of a Gaussian
mixture density, namely {pm, µm, Km; m = 1, . . . , M}. Given N independent,
identically distributed samples, {x1, x2, . . . , xN} let L denote the log-likelihood

16

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

Fig. 1. Densities for components 1 and 2 and the mixture

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

Fig. 2. The training data, the training data with the true mixture density superim-
posed, and the initial codebook

function:

L(θ) =
N
∑

i=1

ln

(

M
∑

m=1

pmgm(xi)

)

.

The EM algorithm is an iterative algorithm for improving the log-likelihood:

p
(n+1)
i =

1

N

N
∑

j=1

ν
(n)
i (j) , µ

(n+1)
i =

∑N
j=1 ν

(n)
i (j)xj

∑N
j=1 ν

(n)
i (j)

K
(n+1)
i =

∑N
j=1 ν

(n)
i (j)(xj − µ

(n+1)
i)(xj − µ

(n+1)
i)t

∑N
j=1 ν

(n)
i (j)

ν
(n)
i (j) =

p
(n)
i g(n)

m (xj)
∑M

l=1 p
(n)
l g

(n)
m (xj)

In the EM algorithm, a training vector has a probability of belonging to each
mixture component, and these probabilities add to unity. In the Lloyd al-
gorithm, a training vector is associated with exactly one mixture component.
Thus the EM algorithm makes “soft” decisions about component membership,
whereas the Lloyd algorithm makes “hard” decisions. The Lloyd algorithm
literally quantizes the input vector space and assigns to each cell a Gaussian

17

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

6

Fig. 3. The Lloyd generated Gauss mixture model from first iteration to convergence

component with matching mean and covariance. The associated probability is
the probability of the cell. For those familiar with EM, this makes Lloyd seem
counter-intuitive. For example, the set of training vectors assigned to a par-
ticular Gaussian component will lie in a Voronoi region that may be bounded ,
but the vectors generated by a Gaussian are unbounded. Thus it is possible
for a Gaussian component to generate a training vector that has no chance

18

2 4 6 8 10 12

3.6

3.8

4

4.2

4.4

4.6

4.8

Fig. 4. Lagrangian distortion vs. iteration

of being assigned to it. Using the Lloyd algorithm will not yield a maximum-
likelihood model, but that is not the intent. Nonetheless, the model generated
from a Lloyd-based algorithm will look similar to the model based on the EM
algorithm.

A key issue in Gauss mixture design is the number of mixture components M .
The larger the number of components, the greater is the possibility to describe
the fine structure of the underlying data distribution. On the other hand, with
a high degree of freedom in the estimation, there is an obvious risk of overfit
where the estimated model significantly reflects random properties associated
with the data. Thus, the number of mixture components must be curtailed.
Much work has been done to estimate the number of components in the EM
algorithm [3,21,2,61,39,66]. Many of the algorithms incorporate a penalty term
along with the log-likelihood function [20]. On the other hand, the Lloyd
algorithm is typically begun with a reasonably large number and the algorithm
prunes cells that it does not need. While there is clearly no inference of an
optimal final number of cells, the structure of the Lloyd algorithm guarantees
at least a locally optimum choice, i.e., cells are pruned only when the result
in a reduction of the Lagrangian average distortion.

The EM algorithm is designed to provide an approximately maximum likeli-
hood estimate for a Gauss mixture density when the data being observed in
fact is produced by a Gauss mixture density. Lloyd clustering takes an alter-
native approach in that it makes no assumption about the actual data which
produced the observation, but it tries to fit a Gauss mixture model to the data
by trying to find a collection of Gaussian models and a mapping from input
vectors into a model that is “best” in the sense of minimizing a prescribed

19

average distortion measure. The distortion measure itself is a measure of how
great the mismatch is between the model being considered and the data being
observed in the sense of how badly a quantizer designed for the model will
perform on the data. In a coding application with a collection of available
codes, one needs a rule for selecting which code is best for the observed data.
The Lloyd approach specifically chooses the Gaussian components (which with
the data imply a probability mass function on the components and hence an
overall Gauss mixture) precisely so as to optimize the overall composite code.
In other words, the resulting reconstructed process will look as much like the
original process as possible. Lloyd optimization aims to construct a Gauss
mixture process that will produce waveforms that closely resemble the orig-
inal process (which is in general not a Gauss mixture). EM design aims to
provide an approximately maximum likelihood estimate of the Gauss mixture
model assumed to be producing the observed data.

6 Classification using GM Models

Statistical classification techniques provide an important application of density
estimation in general and of Gauss mixture modeling in particular. [20,14,18,17,49,33,71,45]
The components of the mixture may be imagined to represent classes, or
classes may each consist of a collection components or a separate mixture.
In this section we compare the EM and Lloyd approaches to the design of
Gauss mixture models by using each to provide the models used in a classifi-
cation algorithm and compare the resulting performance.

Plug-in Classification

One approach to classification is to estimate the underlying densities and then
plug them into a Bayes classifier. The typical setup assumes a random process
(Xi, Yi), i = 0, 1, . . . , where the Xi are k-dimensional real-valued vectors and
take values in a space X , and the Yi designate membership in a class and take
values in a set Y = {1, . . . , L} where L is the number of classes. A classifier
κ(x) predicts the class identities of input vectors. The performance of the
classifier is measured by average Bayes risk

B(κ) =
L−1
∑

k=0

L−1
∑

j=0

CjkP (κ(x) = k and Y = j) = E
L−1
∑

j=0

P (Y = j|X)Cj,κ(X) ,

(14)
where Cj,κ(x) ≥ 0 represents the cost of classifying x as class k when the true
class Y is j. The Bayes risk is minimized by minimizing the sum for each value
of x by choosing the class selected by κ(x) to be the value of k that minimizes

20

the sum over j, i.e., by using the Bayes classifier for the observable x. The
optimal classifier is thus given by κ(x) = arg mink

∑L−1
j=0 CjkP (Y = j|X = x) .

In the case of equal costs for incorrect decisions, i.e., Cjk = 1 for j 6= k and
0 for j = k, the Bayes risk reduces to the probability of error P (κ(X) 6= Y)
and the minimum Bayes risk classifier is a maximum a posteriori (MAP) or
minimum probability of error (MPE) classifier.

In practice, the probabilities are estimated based on the labeled training set,
L = (xi, yi) for i = 1, 2, . . . , N , where yi ∈ Y is the class label of the obser-
vation xi and the estimated probabilities are plugged into the Bayes optimal
estimator. If the estimator is good, then the estimated distribution should con-
verge to the true distribution in some sense as the training sequence grows,
and the approximate Bayes classifier should provide performance near that of
the ideal Bayes classifier. One method of estimating these conditional densities
is to fit a Gauss mixture model. Each class can be modeled independently as
a GM. All the Gaussian mixtures can then be combined with the estimated
class probabilities to provide the densities needed to Bayes classification. When
this plug-in approach is taken, one can directly compare the results of Lloyd
clustering with the EM algorithm for determining the GM models.

Minimum Distortion Classification

A distinct approach which is natural for the quantization viewpoint adopted
here is to simply use the QM or MDI distortion in a minimum distortion
or “nearest neighbor” classifier. Design the Gauss mixture models for each
class as described above using the Lloyd algorithm. Instead of plugging into
a Bayes estimator, however, use the same distortion measure minimized in
the model design as the classification rule. In particular, use the QM or MDI
distortion to select the Gauss component from all of the mixtures, that is,
the best Gaussian in the composite code combining all of the class Gauss
mixtures. The mixture containing the component corresponds to a class, and
that class is the output of the classifier. If a single component were a member
of multiple mixtures, then a more Bayesian rule could be used incorporating
the appropriate probabilities, but experiments suggest this rarely happens.

A variation on this theme classifies by finding the best codebook rather than
the best codeword. Suppose for example we have designed a collection of
Gauss mixture models, one for each class, based on input vectors of dimension
k. Now instead of classifying a single input vector of dimesion k, we look at
a sequence of input vectors, say N of them for a “supervector” of dimension
kN . For example, the codebooks might be designed for 8 × 8 pixel blocks of
an image, but we now want to classify an entire image. For example, in a two
class problem we might have two codebooks, one for each class. Encode the

21

observed image using the first codebook and record the overall distortion and
do the same for the second codebook. The codebook resulting in the lowest
average distortion is declared the winner and its class label is selected. In fact
this idea is very old and was used in isolated utterance speech recognition
(using an MDI distortion) by Shore and Burton [63].

The minimum distortion classifiers, both the ordinary and the codebook ver-
sion, do not perform explicit density estimation — instead they classify by
trying to optimize the same cost function that was used to design the models.

7 Image Coding

We first consider using the Lloyd clustering algorithm to design a classified or
composite vector quantizer. This is the application which motivates the QM
distortion measure, which is specifically aimed at providing a classified VQ
that is optimal in the sense of yielding the overall minimum average mean
squared error when used as a waveform coder. The idea is to design a collec-
tion of Gaussian codebooks, each corresponding to a Gaussian component of
the overall mixture. The classified quantizer chooses the codebook by mini-
mizing a QM distortion, and then picks the best word in the codebook using
ordinary mean squared error. This structure is referred to as a Gauss mixture
vector quantizer or GMVQ. It is similar in structure to Hedelin and Skoglund’s
vector quantizer based on an EM construction of the models [37], the key dif-
ferences being that we use a Lloyd clustering algorithm with QM to design
the codebooks and we consider variable rate coding. These results are not
presented as a serious candidate for this application, but simply to reinforce
the assumptions used to derive the QM distortion measure. In particular, we
wish to demonstrate that the theoretical mismatch provides a good predic-
tion of the mismatch occurred in practice and that the codes designed in this
way perform well in comparison to entropy-constrained vector quantization
(ECVQ) [11] using a Lagrangian distortion based on MSE. We here provide
only a brief survey of these results to point out their behavior. More detailed
results may be found in [1].

The setup for the GMVQ design and test proceeds in two phases. In the
training phase, image data is used to estimate the parameters of the GM
model using the Lloyd algorithm. The Lloyd algorithm is used to estimate the
parameters of the model. Upon completion of density estimation, the resulting
Gauss mixture model is used to generate a large number of synthetic training
data. These training data are used to design the quantizer. In the testing
phase, real image data is used to evaluate the performance of the encoder and
the decoder. We evaluate the results both on the images used to generate the
model (to test the robustness of the Gaussian model on the original emperical

22

distribution) and on new image data (to test the robustness of the overall
approach as a compression system).

Three experiments were run based on GMVQ:

Experiment GMsynth: construct a GM model using the Lloyd clustering

algorithm and then design a composite code for this model using synthetic
Gaussian data. Test the code on separate synthetic Gaussian data.

Experiment GMtrain: construct a GMVQ as in the first simulation. Test the
performance on the real images in the training set used to design the model.
The intention is to test robustness when the covariance structure is known.
Recall that if second-order moments of the new source match the model that
the quantizer mismatch approximately zero. In the simulations, we can verify
that the distortion and rate from this experiment should match closely the
distortion and rate from GMsynth experiment. By using the same images as

the ones used to generate the model, we are ensuring a way of getting very
similar second-order moments. We verify the theory at high-rate and see how
robust the quantizer is at low rates.

Experiment GMtest: Construct a GMVQ as above, but test on images out-

side the training set. This is a true test of robustness of the approach in a
practical sense.

We compare the GMVQ with ECVQ. The ECVQ experiments also proceed
in two phases. In the training phase, we directly use image data to design
the vector quantizer. In the testing phase, test images are provided as input
data. Each image is quantized and its performance is noted. There are two
experiments that are run based on ECVQ.

Experiment ECVQtrain Design a VQ directly on the training data using the
entropy-constrained Lloyd algorithm without any model clustering or compos-
ite codes. The code is tested on the training set.

Experiment ECVQtest: Modify GMtest Design a VQ directly on the training
data using the entropy-constrained Lloyd algorithm without any model clus-
tering or composite codes. The code is tested on images outside the training
set.

Ten training images were used to estimate the GM model. All the images are
gray-scale, 8 bits per pixel and 512× 512. These images are divided into 8× 8
blocks and processed independently. The images are of various types includ-
ing people, indoor, outdoor. The Gauss mixture design is initiated with 10
clusters. The Lloyd approach may prune this to fewer components. The final
design performance is denoted ρde = dde + λrde. where dde and rde are the
average model design distortion and rate. The block size for encoding is 8×8.

23

We vary λ from 10 to 1000 to cover both high and low rates, respectively. We
start the Lloyd algorithm with a large number of codewords (500, 000 in the
experiments) and let the algorithm reach an optimal number of codewords
using ECVQ. The rate and distortion achieved by this quantizer on the syn-
thetic training data are denoted by rGMsynth

and dGMsynth
, respectively. If

the training images are used to test the quantizer, the performance obtained
is dGMtrain

and rGMtrain
. On the other hand, if images outside the training

data are used to test the quantizer, call the performance obtained as dGMtest
and rGMtest

. Figure 5 shows thes robustness results in graphical form. The

experiments indicate that the overall quantizer is indeed robust in the desired
sense.

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

Rate: bits per pixel

D
is

to
rt

io
n:

 M
S

E
 p

er
 p

ix
el

Testing on Synthetic Gaussian Data
GMVQ: testing on images within training set
GMVQ: testing on images outside training set
ECVQ: testing on images within training set
ECVQ: testing on images outside training set

Fig. 5. Distortion-rate performance

The salient points in the figure are the following: ECVQtrain should be the
lowest curve since the quantizer is tested on the same images on which it is
trained. ECVQ should provide the best overall Lagrangian performance if it
is designed using the true distribution. ECVQtest curve should be the highest
and should give the worst performance since the testing images and training
images are different and the code is not designed to be robust. According to the
theory GMtrain should closely match GMsynth. This experiment is designed

to test the robustness result of little difference between the performance of
the Gaussian code on the Gaussian source and on the original source with
matching second order moments. The two curves being close to each other
implies that there is very little or no quantizer mismatch. Both the GMtrain
and GMtest should lie between ECVQtrain and ECVQtest. Using the GM
model followed by vector quantizer, we hope to get lower performance on the

24

training images by virtue of the locally robust composite code. The GMVQ in
this case is built for Gaussian data and not on the training images and hence
we expect that GMVQ will yield worse performance on the training data, but
hope that its robustness will result in better performance than ECVQ outside
the training set. Although we lose on performance of training image data, we
hope to be more robust to images outside the training image data. Indeed the
figure demonstrates the expected behavior and the simulations closely track
the theoretical results; that is, dGMsynth

≈ dGMtrain
and rGMsynth

≈

rGMtrain
. Even at low rates (high λ), the accuracy is very good. In the

graph, we can see that the GMtrain d-r curve closely tracks the GMsynth d-r

curve. Outside the training sequence, GMVQ does better on than ECVQ. In
the graph, the GMtest is lower than the ECVQtest. Another way to state this
result is that the gap between GMtrain and GMtest is much smaller than the
gap between ECVQtest and ECVQtrain.

We compare the {d, r} performance of the quantizer with the predicted {d, r}
from the density estimation. That is, 1

λ
(dsynth + λrsynth) ≈ θk −

k
2
ln λde +

(dde + λderde). Figure 6 shows the prediction result in graphical form. At
high rates, the actual value of distortion and rate closely track the predicted
value. However, as λ increases, there is a deviation between the two curves.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

10

20

30

40

50

60

70

80

90

100

Rate: bits per pixel

D
is

to
rt

io
n:

 M
S

E
 p

er
 p

ix
el

Prediction Experiment

Predicted d−r curve
Actual d−r curve

Fig. 6. Distortion-rate curve showing prediction. Graph shows both the actual dis-
tortion and rate performance of the quantizer as well as the predicted distortion
and rate performance based on density estimation.

As a visual aid, we show in Figure 7 examples of an original image compressed
at three different λ values for both the fixed rate and variable rate GM design.

25

Observe that the image quality of the GMVQ images is comparable to image
quality of the ECVQ images. The corresponding images at a given λ have
similar distortion and rate. From Figure 5, we know that ECVQ may have
better performance on training images. However the important point here is
not compression, necessarily, but robustness. The advantage of GMVQ is that
it provides robustness, gives a predicted performance, and still provides decent
image compression.

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 7. Experiments and GMtrain and ECVQtrain: GMVQ on training images. (a)
original, (b) λ = 10, PSNR = 39.58 dB, Rate = 1.790 bpp, (c) λ = 100, PSNR =
33.17 dB, Rate = 0.627 bpp, (d) λ = 1000, PSNR = 28.15 dB, Rate = 0.215 bpp,
ECVQ VQ on training images. (e) λ = 10, PSNR = 38.61 dB, Rate = 1.702 bpp,
(f) λ = 100, PSNR = 32.01 dB, Rate = 0.526 bpp, (g) λ = 1000, PSNR = 27.36
dB, Rate = 0.144 bpp

The experiment was repeated using AR models of order 1 (nonzero a0,0 =
1, a0,1, a1,0 and a1,1) and the MDI distortion measure. The rate-distortion re-
sults are depicted in Figure 7, which shows similar relative behavior to the

26

corresponding figures for the QM distortion. Figure 9 shows the difference be-
tween the QM, which uses unconstrained Gaussian models, and MDI, which
uses the highly constrained first order two-dimensional autoregressive models.
It merits noting that within the training set the AR models provide worse per-
formance, which is to be expected since the models are more constrained, but
that outside of the training set the AR models provide better performance.
This possibly surprising behavior suggests that the general models can overfit
the training data and that the more structured AR models are more robust
on test data. The visual appearance using both techniques are too close to
distinguish [1].

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

Rate: bits per pixel

D
is

to
rt

io
n:

 M
S

E
 p

er
 p

ix
el

Testing on Synthetic Data
ARMVQ: testing on images within training
ARMVQ: testing on images outside training
ECVQ: testing on images within training
ECVQ: testing on images outside training

Fig. 8. Distortion-rate performance. Note that ARMsynth is very close to ARMtrain.
Also, ARMtest performs better than ECVQtest. The relative positions of these curves
is very similar to the expected results shown in Figure 6.

8 Image Block Classification

As a simple example of Lloyd classifier, we designed a classifier into manmade
and natural pixel blocks for a collection of aerial images of the San Francisco
Bay area provided by TRW (formerly ESL, Inc.) [53]. Segmentation of the
same dataset of aerial images was also studied in [54]. The data set contains
6 images, whose hand-labeled segmented images are used as the truth set of

27

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

120

140

160

180

200

Rate: bits per pixel

D
is

to
rt

io
n:

 M
S

E
 p

er
 p

ix
el

GMVQ: test on images within training
GMVQ: test on images outside training
ARMVQ: test on images within training
ARMVQ: test on images outside training

Fig. 9. Comparison of quantizer performance based on AR mixture model and GM
model. Note that ARMtrain performs worse than GMtrain and that ARMtest per-
forms better than GMtest. This shows that AR mixture model is more robust to
out-of-training images; however, it is worse on training images.

classes. The images are 512×512 gray-scale images with 8 bits-per-pixel. The
Lloyd clustering algorithm was used to design both general Gauss mixtures
using the QM distortion and autoregressive Gauss mixtures using the MDI
distortion. Handlabeled data was used to construct separate training sets for
each class and a Gauss mixture was designed for each class separately. Six-fold
cross validation [66] was used, that is, six experiments were run where each
used a group of five images for training and the sixth for test. Results report
the average over the six experiments.

Ten clusters are used as a starting point for each class. Each image is split
into 8×8 blocks and processed independently. We compare our results against
several classification algorithms including EM, CART, LVQ, Bayes vector
quantization and a classifier based on two-dimensional hidden Markov model
(HMM). For more information regarding these algorithms, refer to [15,5,40,54,43].

The classification performance for image 1 and image 6 used as test (not train-
ing) images are shown in Figure 10. We compare the classification performance
using the Lloyd GM model and the EM algorithm. The classification perfor-
mance of an image is measured by the probability of error. The probability
of error is the number of pixels in the image that are classified incorrectly

28

(according to the hand-labeled image) divided by the total number of pixels
in the image. We can see that the GM model gives good results.

The algorithms were tested by a six-fold cross-validation [66]. For each itera-
tion, one image is used as test data and the remaining 5 are used as training
images. The average probability of error achieved using the Lloyd GM model
is .14. (???As I recall, this was overly optimistic. Need to see if better value.)

The average performance of all the algorithms is summarized in Table 1. Using
the GM model for classification yields the lowest probability of error. Also,
note that using this Lloyd GM based classifier also lends itself nicely to a
composite model to do both compression and classification. The algorithms
were compared under the same conditions; the same set of images were used for
training and the EM algorithm had the same number of Gaussian components
as the GM algorithm.

Experiments were performed on Pentium II 450 MHz PC with Linux oper-
ating system. The average time to classify a 512 × 512 image was less than
0.1 seconds. Compared with single resolution HMM, which takes about 200
seconds, this is a large benefit. It is slightly faster than CART, which takes
around 0.16 seconds on average.

Algorithm ARM GM EM HMM CART LVQ BVQ

Pe 0.178 0.144 0.233 0.188 0.216 0.218 0.215

Table 1
Average classification performance on test data using 6-fold cross validation.

9 Texture Classification

Texture classification [65,42,67] plays an important role in many image pro-
cessing applications such as content-addressable image retrieval [4,59,64,69].
We here use the Lloyd clustering algorithm to design Gauss mixture models
for a collection of textures from the Brodatz texture database [6]. There have
been numerous papers devoted to the classification of Brodatz textures, e.g.,
[50,9,8,34]. We will describe these in comparison with our own results.

Six samples out of the total 112 Brodatz textures are shown in Figure 11. The
left two textures are examples of micro textures, where the granularity is small
and the regularity is preserved. The middle two textures are examples of macro
textures, where the scale is larger and more irregular than the micro textures.
The right two textures are examples of irregular textures, where there is no
specific pattern in the texture.

29

Fig. 10. Comparison of the classification performance of Lloyd GM and EM for
an aerial image outside the training set: Top row from left to right: original im-
age, hand-labeled classified image, Lloyd GM with probability of error .21, EM
with probability of error .24. Bottom row:original, hand-labled classified image,
Lloyd GM with probability of error .17, EM with probability of error .17. White:
man-made, gray: natural.

Fig. 11. Examples of micro, macro, and irregular Brodatz texture.

The three pairs from Brodatz textures in Figure 12, 13, and 14 are examples of
very similar looking textures. The pair in Figure 13 have a similar look of lizard
skin, the one in Figure 14 has a similar mixture of intensity with vertical strips,
and the one in Figure 15 resembles human eyes. These examples show that
the classification problem for the Brodatz texture database is a challenging
problem.

We used the codebook classification approach with an initial block size of
8×8 = 64 used in the Lloyd algorithm using first order autoregressive models
and the MDI distortion.

We applied the GMVQ classifier to 24 arbitrarily chosen textures (20 from
the Brodatz database and 4 from the USC database [68]) and we used the full

30

(a) (b)

Fig. 12. Sample ‘look alike’ Brodatz textures (a) D4, (b) D9.

(a) (b)

Fig. 13. Sample ‘look alike’ Brodatz textures (a) D3, (b) D36.

(a) (b)

Fig. 14. Sample ‘look alike’ Brodatz textures (a) D53, (b) D77.

(a) (b)

Fig. 15. Sample ‘look alike’ Brodatz textures (a) D78, (b) D79.

Brodatz texture set for comparison to several well-known algorithms. The full
Brodatz texture set can be found in [6]. All 512×512 textures were gray level
images with 8 bits per pixel. Our goal was to classify the input at different
scales according to one of the known textures. The 20 Brodatz textures were
D3, D4, D6, D9, D12, D15, D16, D19, D24, D29, D38, D68, D77, D78, D83,
D84, D92, D94, D102, and D112, and the 4 USC textures [68] were 1.5.02,

31

1.5.03, 1.5.05, and 1.5.07. A problem with texture classification for supervised
learning is that it is very hard to obtain the training data. We increased the
training set size by diviging textures into smaller blocks which were used as
training data since the divided textures are more regular and look similar to
other types of images.

We divided each 512 × 512 texture into sixteen non-overlapping blocks of
size 128 × 128. The performance was evaluated through a sixteen-fold cross
validation, where fifteen blocks were used for training and the remaining one
for testing. There were 3840 (= 15 × 128 × 128/(8 × 8)) vectors for training.
In the experiment, we chose the number of mixture components as six (i.e.,
L = 6) during training and used it for testing.

After training, we have multiple Gauss mixture codebooks. During testing,
the left-out block of size 128×128 was divided into sub-blocks of various sizes
S =

{

(128 × 128), (64 × 64), (32× 32), (16 × 16)
}

.

Each large block was classified based on the sample average distortion resulting
for codebooks applied sequentially to all subblocks. Classification took less
than 1.3 seconds for 128 × 128 blocks and 0.4 seconds for 64 × 64 blocks on
a Pentium II 450MHz computer with a Linux operating system, providing
real-time operation for browsing applications.

Comparisons

We compare the Lloyd Gauss mixture codebook classifier with a variety of
alternatives.

Gauss Markov Random Fields Approach

Gauss mixture random field (GMRF) approach of Chellappa et al. [9] attempts
to capture the global information of the texture by expanding the neighbor-
hood of a Markov random field. The classification results of the GMVQ clas-
sifier were compared with the best results of GMRF methods for 64 × 64
and 32 × 32 block sizes. Generally the performance of the classifier degrades
where the block size becomes smaller as shown later. Seven textures (Wood
(D68), Grass (D9), Bark (D12), Pigskin (D92), Leather (D24), Raffia (D84),
and Wool (D19)) from the Brodatz album were used for the experiment with
two different input scales, 32 × 32 and 64 × 64.

The GMRF classifier assumes that the texture within the specified window
was generated from a Gaussian density and that the dependency between
the neighboring pixels is Markovian. Two features, least-square estimates of

32

GMRF model parameters and sample correlations over the symmetric window,
were extracted and used independently for the classification in the GMRF
model. One of the most important characteristics of the texture is the scale.
We captured a large scale by expanding the number of neighbors in GMRF.
A fourth-order GMRF model was assumed in [9]. By using this context in-
formation, we tried to capture the global statistics of the image.

In our model, the context information is hierarchical. The low-level context
information is modeled by the covariance of the neighboring pixels within the
AR window whereas the high-level information is modeled by the superblock
formula. Instead of using these approaches at the same time during training,
we follow the divide and conquer approach. The low-level information is cap-
tured in training whereas the high-level information is captured in testing.
The superblock formula has arithmetic complexity, which makes it extremely
fast. The calculation can be done recursively.

While MDI distortion is used for the GMVQ classifier, least-square distortion
is used for the GMRF classifier. We modeled the smooth density of various
textures using Gauss mixture models, but used a single Gaussian density for
the GMRF classifier. The GMVQ classifier does not assume Markov properties
and does not follow Markov models. ????Is this true? Our models are our
codewords, which are AR and hence Markov. Smoothing using the superblock
formula during testing implicitly assumes that the neighboring blocks can not
abruptly change in the texture being modeled, which is a similar but slightly
different assumption since the dependency is on the pixel level in Markov
random field models.

GMVQ outperformed GMRF for both scales. The performance degradation
for reduced block size was not as severe as it was in [9], because Gauss mix-
tures provide more robust models of multi-modal properties of the smaller
block density and the superblock formula captured the context information.
Whereas GMRF failed to capture the different scales of the textures, GMVQ
successfully captures them by using the superblock formula. The Gauss mix-
ture captures the variability of the density of the neighboring pixels during the
training phase, but the superblock formula improved the recognition perfor-
mance of the irregular textures during the testing phase, resulting in GMVQ
performance better than GMRF. Our results were based on 1792 test samples
for 32 × 32 blocks and 448 test samples for 64 × 64 blocks. They were more
reliable than the results based on 112 test samples used in [9].

Method GMVQ† GMRF† GMVQ‡ GMRF‡

CCR 99.8 93.75 100 99.1

Table 2
Comparison between the classification performance between GMVQ and GMRF for
† 32 × 32 and ‡ 64 × 64 block size. CCR denotes the correct classification rate.

33

Comparison with multi-resolution TSWT

A problem with GMRF and the second-order statistics methods [10,19,35]
is that they fail to capture the different scales of textures because the fea-
tures depend only on the coupling between the neighboring pixels on a single
scale. To overcome this difficulty, multi-resolution approaches such as tree-
structured wavelet transforms (TSWT) [8] have been proposed to capture
spatial and frequency information at the same time. Conventional pyramid-
structured wavelet transforms expand the frequency resolution into the low
frequency region. For textures, however, the important information is nor-
mally in the middle frequency region [8]. Therefore, TSWT expands the tree
adaptively according to the energy of the leaves of the tree, assuming that the
energy has the information for discriminating textures. Chang et al. [8] com-
pared three algorithms having a fixed number of features and progressively
determined features with popular methods such as DCT, pyramid structured
wavelet transform, and Gabor transform using four different distance mea-
sures: Bayes, Mahalanobis, simplified Mahalanobis, and Euclidean.

Table 3 presents the results comparing GMVQ with TSWT [8]. An average
over the thirty Brodatz textures in table 6 from [8] were used for compari-
son. The distance measures used for the classification were the following: The

Distortion → MDI† d1‡ d2‡ d3‡ d4‡

Average 99.6% 93.5% 99.6% 99.4% 98.9%

Table 3
Comparison of the classification performance of MDI using GMVQ and other dis-
tance measures d1, d2, d3, and d4 using TSWT; d1 is the Euclidean distance, d2 is
the Bayes distance, d3 is the Mahalanobis distance, and d4 is the simplified Maha-
lanobis distance.

Euclidean distance is shown in in 15, the Bayes distance in 14, the Maha-
lanobis distance in 17, and the simplified Mahalanobis distance in 18. The
Mahalanobis distance is useful when the statistical properties of textures are
known. When the covariance matrix is diagonal, the Mahalanobis distance re-
duces to the simplified Mahalanobis distance. This makes the calculation re-
cursive and allows fast evaluation of the distance. Assuming that the features
are Gaussian with common covariance and different means, a Bayes decision
rule is equivalent to a minimum distortion rule with the Mahalanobis distance
plus the logarithm of the covariance matrix, i.e., the Bayes distance. Generally
the MDI distance provided the best result, with its correct classification rate
(CCR) equal to 99.6% of that of the Bayes distance, outperforming slightly
the 99.4% CCR of the Mahalanobis distance. The Euclidean distance provided
worse performance (CCR 93.5%) than other distance measures, implying that
the simple mean square error is not appropriate for classification purposes.

34

D1,i =
J
∑

j=1

(

xj − mi,j

)2
(15)

D2,i =
(

x − mi

)T
Ci

−1
(

x − mi

)

+ ln |Ci| (16)

D3,i =
(

x − mi

)T
Ci

−1
(

x − mi

)

(17)

D4,i =
J
∑

j=1

(

xj − mi,j

)2

ci,j

(18)

The block size was 128 × 128 for our result whereas it was 256 × 256 for
the TSWT results. As pointed out in [50,9,8] and verified experimentally in
section 9.0.1, the performance degraded as the block size became smaller. In
this sense, our result is more conservative and better than TSWT results based
on the non-MDI distortion measures due to GMVQ’s comparable performance
with smaller block sizes. If overlapping blocks of size 256 × 256 were used for
GMVQ, the performance would likely be higher than the results reported
in table 3. All textures except D74 were perfectly classified by the GMVQ
classifier based on the MDI in table 3. This is remarkable since even people
often find the textures difficult to match (for example, D4 vs. D9 in Figure 12,
D3 vs. D36 in Figure 13, D53 vs. D77 in Figure 14, D78 vs. D79 in Figure 15.
However, the GMVQ classifier perfectly distinguished these similar looking
textures and did so quickly.

Chang et al. [8] made the assumption that the higher energy of the wavelet
channel corresponded to more discrimination power and used this as a criterion
for progressive expansion of the tree. Our features were parameterized proto-
types of the smooth density of neighboring pixels and we used MDI distortion
between densities as a criterion for discrimination.

A Gabor wavelet classifier

As shown in the former section, wavelet transforms such as TSWT are popular
methods for capturing the different scale of textures. Another popular method
is the Gabor transform method since it exhibits properties that are similar to
visual sensory systems. The Gabor transform provides the joint localization
in the time and frequency domains and has the nice property of invariance to
rotation when it is expressed in a polar form. The classification performance of
the GMVQ classifier incomparison to the performance of the Gabor wavelet
classifier [34] on the entire Brodatz texture database may be found in [55].
Summarizing these results, out of 1776 sample images, 1578 (88.9%) were
classified correctly by GMVQ. Haley et al. [34] who used the Gabor wavelet
classifier, reported a correct classification rate of 80.4% for 872 sample images,
i.e., 701 images were correctly classified (see table 2 in [34]). Both of these
results were based on 128×128 blocks, but our results were more reliable than

35

their results since they were based on twice as many test samples.

Many of the textures in the Brodatz album are not homogeneous. The GMVQ
classifier showed a remarkable improvement in CCR for some inhomogeneous
textures including D2, D7, and D73. From table ??, CCR improved from
the 12.5% attained with the Gabor wavelet classifier to 93.75% attained with
the GMVQ classifer for D2, from 12.5% to 81.25% for D7, and from 12.5% to
43.75% for D73. But we observed a sharp decline in performance, from 81.25%
to 40.63% for D7, and from 43.75% to 28.13% for D73, when the superblock
size was reduced from 128 × 128 to 64 × 64. This shows that the superblock
formula combined with GMM successfully captures the multi-modal density of
irregular textures. For homogeneous textures such as D4, D9, D35, and D37,
100% CCR was recorded for the GMVQ classifier, which is the same perfor-
mance as that of the Gabor wavelet classifier. Our performance improvement
is due mainly to the improvement we achieved on irregular textures and is
based on the combination of GMM and the superblock approach.

In [34], the micro features of textures contained local amplitude, frequency,
phase, direction, and directionality information, which were extracted by for-
mulas from the Gabor wavelet coefficients. A Gabor function is a bandpass
filter, the product of a Gaussian and a complex sinusoid. [34] extracted six
micro features and used them to formulate a single multivariate Gaussian dis-
tribution. They selected the features to be rotation-invariant based on the
polar form of the two-dimensional Gabor function. The macro features of the
textures were based on micro features to capture global amplitude, frequency,
and directionality information. Nine macro features were used to estimate
the mean and covariance of a single multivariate Gaussian distribution. The
classification was determined by the macro features.

Classifying Pipeline Images

Our data were provided by Norsk Electro Optikk (NEO), a company that
maps the interior walls of gas pipelines with an optical scanner. NEO intends
to catalogue features of interest (e.g. surface characteristics) in the pipeline
segments. Accurate classification of this pipeline data allows for early detection
of pipeline damage, which is of significant commercial interest. The images
are grayscale with size 96 × 128 pixels. In addition to the raw data, there is
a derived dataset consisting of features (22 for each image) hand-picked for
their ability to distinguish classes [51,52].

There are, in total, 12 classes in the pipeline dataset, as described in [51],
corresponding to various surface characteristics of the pipeline segments. We
choose to build classifiers to distinguish three macroclasses: Plain Steel (here-

36

after Class S), Longitudinal Weld (Class V), and Field Joint (Class W).

37

Fig. 16. Normal pipeline image, field joint, longitudinal weld

Macroclass Component Classes Sample Count

S Normal, Osmosis Blisters, Black Lines,
Small Black Corrosion Dots, Grinder
Marks, MFL Marks, Corrosion Blisters,
Single Dots

153

V Longitudinal Welds 20

W Weld Cavity, Field Joint 39

We choose these three macroclasses because they present a realistic classifi-
cation problem to test our methods upon. The macroclasses, by their very
nature, are mixtures, so GM models are well suited here.

The hand-picked (derived) dataset and the image-based dataset have very
different characteristics. In the former, vector dimension is low (22) and the
information is dense in the dimensions due to human effort. In the latter,
vector dimension is high for the whole image (128 × 96 = 122880), much of
which is devoid of classifiable content. We apply the appropriate algorithm to
each dataset:

• For the hand-picked features, we choose to build classifiers by modeling the
source as a random variable in R

22. We fit a Gauss mixture model to the
training data from each macroclass separately. Final classification is by by
minimizing plugin Bayes risk. This is done for both EM and GMVQ using
the QM distortion. As a third alternative for comparison we also used ECVQ
with λ = 1 and MSE distortion and then for each resulting quantization cell
used the mean and covariance centroid formulas to form a corresponding
Gauss component. We used regularized covariances to avoid singularities
with α = 0.01.

• For the image-based data, we use the codebook version of the GMVQ. since
practically, we cannot take the whole image as a single feature vector. Not-
ing that the images in our dataset have been previously stored using JPEG
compression and subsequently decompressed, we do two things to avoid
JPEG artifacts. For each image, we divide it into 192 8×8 blocks. Instead
of using raw pixel values, each 8×8 block is also Fourier transformed, and

38

the 15 coefficients in the upper-left triangle, with the DC component at
position (1, 1), are taken and reshaped into a vector. (In this experiment,
including higher frequency coefficients beyond the 15 does not appear to be
an improvement as they contain much JPEG quantization noise.) Unrelated
to JPEG compression, we take the magnitude of the Fourier transform only,
discarding the phase, since we are not interested in shift variations of fea-
tures in blocks. The 15 dimensional real vectors, then, are used for training
with GMVQ. We train separately for the original component classes and
combine the classification results into the three macroclasses as the last
step. (Again we fix λ = 1 and α = 0.01.)

For comparison, results are also obtained using other established classification
methods (Regularized QDA, 1-NN, MART) [36] on the hand-picked features.
MART is a gradient boosted version of a classification tree [22]. 2 LDA fits a
Gaussian with the same covariance to each class. QDA calculates the covari-
ance independently for each class. Regularized QDA uses a weighted average
of the LDA and QDA covariances for each class. The image is assigned to
the class with highest probability. The final algorithm considered is a simple
one-nearest-neighbor classifier (1-NN) using Euclidean distance.

All methods above are run on the dataset using leave-one-out cross-validation.

The table below shows classification results from all these methods. The first
six algorithms classify hand-picked features whereas the final one classifies
images using the codebook method. The last four algorithms are GM based,
as contrasted with the first three, which are not.

Recall is defined to be (#assigned correctly to class)/# in class), whereas
precision is defined to be (# assigned correctly to class/(# assigned to class).
Overall accuracy, defined to be (# correct assignments)/(# assignments) is
displayed in the rightmost column.

2 MART was implemented using code available at http://www-
stat.stanford.edu/˜jhf/

39

Method Recall Precision Accuracy

S V W S V W

MART 0.9608 0.9000 0.8718 0.9545 0.9000 0.8947 0.9387

Reg. QDA 0.9869 1.0000 0.9487 0.9869 0.9091 1.0000 0.9811

1-NN 0.9281 0.7000 0.8462 0.9221 0.8750 1.0000 0.8915

MAP-ECVQ 0.9737 0.9000 0.9437 0.9739 0.9000 0.9487 0.9623

MAP-EM 0.9739 0.9000 0.9487 0.9739 0.9000 0.9487 0.9623

MAP-GMVQ 0.9935 0.8500 0.9487 0.9682 1.0000 0.9737 0.9717

Image-GMVQ 0.9673 0.8000 0.9487 0.9737 0.7619 0.9487 0.9481

On the hand-picked feature set, the GM based methods (Plug-in-Bayes-ECVQ,
Plug-in-Bayes-EM, Plug-in-Bayes-GMVQ) are competitive with the non-GM
based methods, outperforming both 1-NN and MART. Arguably, Plug-in-
Bayes-GMVQ does equally well as regularized QDA. In fact, excepting Class
V, which suffers from a paucity of training and testing data, Plug-in-Bayes-
GMVQ does somewhat better. We emphasize that we do not optimize for
the best regularization coefficient α in the GM based methods, as is done
in regularized QDA. We expect that in a completely equivalent comparison
between MAP-GMVQ and regularized QDA, (i.e. optimizing for α in both),
and with enough data, the former would do better than the latter for datasets
with significant local features.

Next, we compare the three underlying GM clustering algorithms. We find
that GMVQ tends to perform slightly better than EM, here and in other test
cases. ECVQ, on the other hand, assumes nothing about the shape of the
distribution during the clustering process, and tends to overfit the data and
can perform poorly at times. Consistently accurate classification on different
datasets empirically shows that GMVQ can be an excellent alternative to the
more popular EM method for fitting GM models to data, considering that
GMVQ converges more quickly than EM and, supplied with a Lagrangian
distortion, needs no specialized pruning procedure as EM does.

Whole image classification also performs surprisingly well compared to the
other methods, again outperforming MART and 1-NN. Though it is not as
good as the best of the others, we must keep in mind that no class-specific
features are pre-selected for this classification, which is a compelling advantage
in favor of this method.

Figure 2 depicts the action of the clustering algorithm and Figure 2 shows
the convergence of the QM distortion with Lloyd iteration. The convergence
of the distortion is plotted in Figure 2

40

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 17. Projection of feature vectors onto first two dimensions for Field Joint Class:
initial code, first iteration, convergence. Ellipses show equal values of Gaussian
component densities.

2 4 6 8 10 12 14 16 18

6

7

8

9

10

11

12

13

14

Fig. 18. Convergence of the QM distortion with Lloyd iteration.

The experiments were also run using first order two-dimensional autoregressive
models. The results were similar but slightly worse.

10 Conclusions

We have described and developed an algorithm for Gauss mixture design based
on Lloyd clustering and demonstrated its application to both image compres-
sion and statistical classification of image blocks. We have compared and con-
trasted the Lloyd algorithm to the dominant approach, the EM algorithm.
While EM provides an approximate maximum likelihood estimation of the
parameters of an observed Gauss mixture, the Lloyd approach quantizes the
space of all nonsingular Gaussian models so that quantizers or source codes
designed for the models will together produce a good composite quantizer or
source code for the observed data, which is not itself assumed to be from a

41

Gauss mixture. EM assumes a Gauss mixture model for the observed data
and tries to to estimate the density, Lloyd does not assume a specific model
for the observed data, but tries to fit a Gauss mixture model to the data in a
way that the model produces waveforms that provide a good codebook for the
data. Both approaches are “optimum” for specific signal processing problems,
but they differ in philosophy and the optimization goal. We have shown by
example that the robustness predicted by the theory is consistent with ac-
tual designs using Lloyd clustering. We have also argued based on theory and
demonstrated by example that the Lloyd clustering design of a Gauss mix-
ture model using a minimum distortion encoder and the quantizer mismatch
encoder yields a variation on nearest neighbor classification where the nearest
neighbor is found using the same distortion measure as was used to design the
mixture. We also point to the success of similar methods in LPC and CELP
speech as examples which reinforce the simple image coding and classification
experiments described here.

References

[1] A. K. Aiyer. Robust Image Compression using Gauss Mixture Models. PhD
thesis, Stanford University, 2001.

[2] H. Akaike. Information theory and an extension of the maximum likelihood
principle. In Proceedings IEEE International Symposium Information Theory,
pages 267–281, 1973.

[3] J. D. Banfield and A. E. Raftery. Model-based Gaussian and non-Gaussian
clustering. Biometrics, 49:803–821, 1993.

[4] S. Belongie, C. Carson, H. Greenspan, and J. Malik, “Color-and texture-
based image segmentation using em and its application to content-based image
retrieval,” in Proceedings of International Conference on Compueter Vision,
Bombay, India, 1998, pp. 675–682.

[5] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Chapman & Hall, 1984.

[6] P. Brodatz, “Textures: Photographic album for artists & designers,” New York:
Dover, New York, 1966.

[7] J. A. Bucklew and G. L. Wise. Multidimensional asymptotic quantization
theory with rth power distortion measures. IEEE Transactions on Information
Theory, 28:239–247, March 1982.

[8] T. Chang and C.-C. J. Kuo, “Texture analysis and classification with tree-
structured wavelet transform,” IEEE Trans. On Image Processing, vol. 2, no. 4,
pp. 429–441, October 1993.

42

[9] R. Chellappa and S. Chatterjee, “Classification of textures using gaussian-
markov random fields,” IEEE Trans. Acoust., Speech. Signal Process., vol. 33,
pp. 959–969, August 1985.

[10] P. C. Chen and T. Pavlidis, “Segmentation by texture using correlation,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 5, pp. 695–707, January 1983.

[11] P. A. Chou, T. Lookabaugh, and R. M. Gray. Entropy-constrained vector
quantization. IEEE Transactions on Acoustics, Speech and Signal Processing,
37:31–42, jan 1989.

[12] P. A. Chou, T. Lookabaugh, and R. M. Gray. Optimal pruning with
applications to tree-structured source coding and modeling. IEEE Transactions
on Information Theory, 35(2):299–315, March 1989.

[13] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John
Wiley & Sons, New York, NY, 1991.

[14] N. M. B. de Pinho Cruz de Vasconcelos. Bayesian Models for Visual Information
Retrieval. PhD thesis, Massachusetts Institute of Technology, 2000.

[15] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Jounral of the Royal Statistics Society,
39(1):1–21, 1977.

[16] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John
Wiley & Sons, New York, 1973.

[17] B. S. Everitt. A finite mixture model for the clustering of mixed-mode data.
Statistical Probability Letter, 6(5):305–309, 1988.

[18] B. S. Everitt and D. J. Hand. Finite Mixture Distributions. Chapman & Hall,
1981.

[19] O. D. Faugeras and W. K. Pratt, “Decorrelation methods of texture feature
extraction,” IEEE Trans. Pattern Anal. Machine Intell., vol. 2, pp. 323–332,
July 1980.

[20] M. Figueiredo and A. K. Jain. Unsupervised learning of finite mixture models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000.

[21] C. Fraley. Algorithms for model-based gaussian hierarchical clustering. SIAM
Journal on Scientific Computing, 20(1):270–281, 1998.

[22] J. Friedman, “Greedy function approximation: A gradient boosting machine,”
The Annals of Statistics, vol. 39, no. 5, 2001.

[23] A. Gersho. Asymptotically optimal block quantization. IEEE Transactions on
Information Theory, 25:373–380, July 1979.

[24] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.
Kluwer Academic publishers, Boston, 1992.

43

[25] S. Graf and H. Luschgy. Foundations of Quantization for Probability
Distributions. Springer, Berlin, 2000.

[26] R. M. Gray, “Gauss mixture vector quantization,” Proceedings 2001
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Vol. 3, pp. 1769–1772, Salt Lake City, May 2001.

[27] R. M. Gray, Jr. A. H. Gray, G. Rebolledo, and J. E. Shore. Rate distortion
speech coding with a minimum discrimination information distortion measure.
IEEE Transactions on Information Theory, 27(6):708–721, November 1981.

[28] R. M. Gray, A. Buzo, A. H. Gray, Jr., and Y. Matsuyama. Distortion measures
for speech processing. IEEE Transactions on Acoustics, Speech and Signal
Processing, ASSP-28:367–376, aug 1980.

[29] R. M. Gray and D. L. Neuhoff. Quantization. IEEE Transactions on
Information Theory, 44(6):2325–2383, October 1998.

[30] R.M. Gray and T. Linder. Mismatch in high rate entropy constrained vector
quantization. IEEE Trans. Inform. Theory, 49:1204–1217, May 2003.

[31] R.M. Gray, T. Linder, and J. Li. A Lagrangian formulation of zador’s entropy-
constrained quantization theorem. IEEE Trans. Inform. Theory, 48(3):695–707,
Mar. 2002.

[32] R.M. Gray, J.C. Young, and A. K. Aiyer. Minimum discrimination information
clustering: modeling and quantization with gauss mixtures. In Proceedings 2001
IEEE International Conference on Image Processing, volume 2, pages 14–17,
Thessaloniki, Greece,, Oct. 2001.

[33] T. Hastie and R. Tibshirani. Discriminant analysis by Gaussian mixtures.
Journal of Royal Statistical Society, B 58:155–176, 1996.

[34] G. M. Haley and B. S. Manjunath, “Rotation-invariant texture classification
using a complete space-grequency model,” IEEE Trans. On Image Processing,
vol. 8, no. 2, pp. 255–269, 1999.

[35] R. M. Haralick, “Statistical and structural approaches to texture,” Proc. IEEE,
vol. 67, pp. 786–804, May 1979.

[36] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,
Springer-Verlag, New York, 2001.

[37] P. Hedelin and J. Skoglund. Vector quantization based on Gaussian mixture
models. IEEE Transactions on Speech and Audio Processing, 8(4):385–401, July
2000.

[38] F. Itakura and S. Saito, “A statistical method for estimation of speech spectral
density and formant frequencies,” Electron. Commun. Japan, vol. 53-A, pp.
36–43, 1970.

[39] A. K. Jain and J. V. Moreau. Bootstrap technique in cluster analysis. Pattern
Recognition, 20(5):547–568, 1987.

44

[40] T. Kohonen. An introduction to neural computing. Neural Networks, 1:3–16,
1988.

[41] S. Kullback. Information Theory and Statistics. Dover, New York, 1968. Reprint
of 1959 edition published by Wiley.

[42] A. Jain and A. Vailaya, “Image retrieval using color and shape,” Pattern
Recognition Journal, vol. 29, pp. 1233–1244, August 1996.

[43] J. Li, A. Najmi, and R.M. Gray, “Image classification by a two dimensional
hidden Markov model,” IEEE Transactions on Signal Processing, Vol. 48, pp.
517–533, February 2000.

[44] H. Lev-Ari, S. R. Parker, and T. Kailath, “Multidimensional maximum-entropy
covariance extension,” IEEE Transactions on Information Theory, Vol. 35, pp.
497–508, May 1989.

[45] X. Q. Li and I. King. Gaussian mixture distance for information retrieval.
In Proceedings International Conference on Neural Networks, volume 4, pages
2544–2549, Washington, DC, July 1999.

[46] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer design.
IEEE Transactions on Communications, 28:84–95, 1980.

[47] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on
Information Theory, 1957. Bell Laboratories Technical Note. Reprinted in IEEE
Transactions on Information Theory, 28:127–135, March 1982.

[48] J. MacQueen, “Some methods for classification and analysis of multivariate
observations.” In Proc. of the Fifth Berkeley Symposium on Mat. Stat. and
Prob., volume 1, pages 281–296, 1967.

[49] G. J. McLachlan and K. E. Basford. Mixture Models: Inference and Applications
to Clustering. Marcel Dekker Inc., New York, 1988.

[50] G. F. McLean, “Vector quantization for texture classification,” IEEE Trans.
Systems, Man, Cybernetics, vol. 23, no. 3, May/June 1993.

[51] D.B. O’Brien, M. Gupta, R.M. Gray, J.K. Hagene, “Automatic Classification
of Images from Internal Optical Insepection of Gas Pipelines,” ICPIIT VIII
Conference 2003, Houston.

[52] D.B. O’Brien, M. Gupta, R. M. Gray, J. K. Hagene, “Analysis and classification
of internal pipeline images,” Proceedings of ICIP 2003, Barcelona, Spain.

[53] K.L. Oehler and R.M. Gray, “Combining image compression and classification
using vector quantization,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, volume 17, pp. 461–473, May 1995.

[54] K. O. Perlmutter, C. L. Nash, and R. M. Gray. A comparison of Bayes risk
weighted vector quantization with posterior estimation with other VQ-based
classifiers. In Proceedings of International Conference on Image Processing,
volume 2, pages 217–221, Austin, TX, 1994.

45

[55] Kyungsuk Pyun, Classification and Segmentation of Images using Hidden
Markov Gauss Mixture Models, PhD Dissertation, Department of Electrical
Engineering, Stanford University, June 2003.

[56] K. Pyun, C.S. Won, J. Lim, R.M. Gray, “Texture classification based on multiple
Gauss mixture vector quantizers,” Multimedia and Expo, 2002, pp 501-4, 2002.

[57] B. Ramamurthi and A. Gersho. Classified vector quantization of images.
IEEE Transactions on Communication Technology, COM-34(11):1105–1115,
November 1986.

[58] R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and
the em algorithm. SIAM Review, 26(2):195–239, 1984.

[59] Y. Rui, T. Huang, and S.-F. Chang, “Image retrieval: Current techniques,
promising directions and open issues,” Journal of visual communication and
image representation, vol. 10, pp. 39–62, March 1999.

[60] D. J. Sakrison. Worst sources and robust codes for difference distortion
measures. IEEE Transactions Information Theory, 21:301–309, May 1975.

[61] G. Schwarz. Estimating the dimension of a model. Annals of Statistics,
6(2):461–464, 1978.

[62] C. E. Shannon. Coding theorems for a discrete source with a fidelity criterion.
IRE National Convention Record, Part 4, pages 142–163, 1959.

[63] J. E. Shore and D. K. Burton, “Discrete utterance speech recognition without
time alignment,” in Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, may 1982, p. 907.

[64] J. Smith and S. Chang, “Visualseek: a fully automated content-based image
query system,” ACM Multimedia, pp. 87–98, 1996.

[65] J. R. Smith and S. F. Chang, “Tools and techniques for color image retrieval,”
in IST/SPIE - Storage Retrieval for Image and Video Databases, vol. 2670, San
Jose, CA, February 1996, pp. 426–437.

[66] M. Stone. Cross-validation. Mathematics Operationsforsch. Statistical Ser.
Statistics, 9(1):127–139, 1978.

[67] N. Vasconcelos, “Bayesian models for visual information retrieval,” Ph.D.
dissertation, Massachusetts Institute of Technology, Programs in Media Arts
and Science, 2000.

[68] A. Weber, “Image database,” USCIPI Rep. 1070, Image Processing Institute,
March 1983.

[69] J. C. Young, “Clustered gauss mixture models for image retrieval,” Ph.D.
dissertation, Stanford University, Electrical Engineering Department, April
2003.

[70] P. L. Zador. Topics in the asymptotic quantization of continuous random
variables, 1966. Unpublished Bell Laboratories Memorandum.

46

[71] X. Zhuang, Y. Huang, K. Palaniappan, and Y. Zhao. Gaussian mixture
density modeling, decomposition and applications. IEEE Transactions on
Image Processing, 5(9):1293–1301, September 1996.

47

